Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron enolates from silyl enol ethers

An interesting example from carbohydrate chemistry is the boron trifluoride-diethyl ether complex catalyzed nucleophilic addition of silyl enol ethers to chiral imines (from n-glyceralde-hyde or D-serinal)22. This reaction yields unsaturated y-butyrolactones with predominantly the D-arabino configuration (and almost complete Cram-type erythro selectivity). [Pg.765]

Z-Boron enolates can also be obtained from silyl enol ethers by reaction with the bromoborane derived from 9-BBN (9-borabicyclo[3.3.1]nonane). This method is necessary for ketones such as 2,2-dimethyl-3-pentanone, which give E-boron enolates by other methods. The Z-stereoisomer is formed from either the Z- or E-silyl enol ether.20... [Pg.73]

A one-pot reaction between a tryptophan ester, benzotriazole, and 2,5-dimethoxytetrahydrofuran in acetic acid gives the diastereomeric benzotriazolyl tetracycles, 349, in good yield. Substitution of the benzotriazole by reaction with silyl enol ethers and boron trifluoride etherate gives the corresponding ketones 350 and 351, and reaction with allylsilanes gives the corresponding alkenes 352 and 353. If the boron trifluoride etherate is added to the mixture before the silane, elimination of benzotriazole from 349 is also observed (Scheme 83) <1999T3489>. [Pg.926]

Although in the recent years the stereochemical control of aldol condensations has reached a level of efficiency which allows enantioselective syntheses of very complex compounds containing many asymmetric centres, the situation is still far from what one would consider "ideal". In the first place, the requirement of a substituent at the a-position of the enolate in order to achieve good stereoselection is a limitation which, however, can be overcome by using temporary bulky groups (such as alkylthio ethers, for instance). On the other hand, the ( )-enolates, which are necessary for the preparation of 2,3-anti aldols, are not so easily prepared as the (Z)-enolates and furthermore, they do not show selectivities as good as in the case of the (Z)-enolates. Finally, although elements other than boron -such as zirconium [30] and titanium [31]- have been also used succesfully much work remains to be done in the area of catalysis. In this context, the work of Mukaiyama and Kobayashi [32a,b,c] on asymmetric aldol reactions of silyl enol ethers with aldehydes promoted by tributyltin fluoride and a chiral diamine coordinated to tin(II) triflate... [Pg.265]

Allyl silanes react with a wide variety of electrophiles, rather like the ones that react with silyl enol ethers, provided they are activated, usually by a Lewis acid. Titanium tetrachloride is widely used but other successful Lewis acids include boron trifluoride, aluminium chloride, and trim ethyls ilyl tri-flate. Electrophiles include the humble proton generated from acetic add. The regiocontrol is complete. No reaction is observed at the other end of the allylic system. All our examples are on the allyl silane we prepared earlier in the chapter. [Pg.1298]

A kinetic study of the Ph2BOH-catalysed reactions of several aldehydes with 2 revealed that the rate of the disappearance of 2 followed first-order kinetics and was independent from the reactivity of the aldehydes used. Taking into account this result, we have proposed the reaction mechanism in which a silyl enol ether is transformed to the corresponding diphenylboryl enolate before the aldol addition step takes place (Scheme 13.1). The high diastereoselectivity is consistent with the mechanism, in which the aldol step proceeds via a chair-like six-membered transition state. The opposite diastereoselectivity in the reaction with the geometrical isomers of the thioketene silyl acetal shown in Table 13.3 also supports the mechanism via the boron enolate, because this trend was also observed in the classical boron enolate-mediated reactions in dry organic solvents. Although we have not yet observed the boron enolates directly under the reaction conditions, this mechanism can explain all of the experimental data obtained and is considered as the most reasonable one. As far as we know, this is the first example of... [Pg.277]

In modern organic chemistry, silyl enol ethers, as well as the corresponding titanium, tin, boron, or zirconium derivatives, are widely employed as nucleophilic components in enolate alkylation reactions. Their usefulness prompted the elaboration of numerous methods for the selective production of isomeri-cally pure enol ethers from almost any type of carbonyl compounds. [Pg.138]

Silyl enol ethers, which are readily generated regiospecifically from ketones, can also be reduced to al-kenes, particularly by hydroboration. " Hydroboration of silyl enol ethers results in the addition of boron to the 3-c on of the double bond to afford fra/is-3-trimethylsilyloxy organoboranes, which in cyclic systems undergo anti elimination in the presence of acid to give the alkenic product (Scheme 42). A number of acids have been tested successfully, including carboxylic acids, BF3-Et20 and... [Pg.936]

Boron-mediated aldol reactions of -oxygenated methyl ketones are normally unselective, and chiral ligands are needed to achieve useful levels of control. However, as shown in Scheme 9-6, a Mukaiyama aldol reaction can be used where induction from silyl enol ether 13 is high, favouring adduct 14 [7, 8]. [Pg.253]

Given this problem, the attachment of the butanone synthon to aldehyde 74 prior to the methyl ketone aldol reaction was then addressed. To ovenide the unexpected. vTface preference of aldehyde 74, a chiral reagent was required and an asymmetric. syn crotylboration followed by Wacker oxidation proved effective for generating methyl ketone 87. Based on the previous results, it was considered unlikely that a boron enolate would now add selectively to aldehyde 73. However, a Mukaiyama aldol reaction should favour the desired isomer based on induction from the aldehyde partner. In practice, reaction of the silyl enol ether derived from 87 with aldehyde 73, in the presence of BF3-OEt2, afforded the required Felkin adduct 88 with >97%ds (Scheme 9-29). This provides an excellent example of a stereoselective Mukaiyama aldol reaction uniting a complex ketone and aldehyde, and this key step then enabled the successful first synthesis of swinholide A. [Pg.265]

In recent years, catalytic asymmetric Mukaiyama aldol reactions have emerged as one of the most important C—C bond-forming reactions [35]. Among the various types of chiral Lewis acid catalysts used for the Mukaiyama aldol reactions, chirally modified boron derived from N-sulfonyl-fS)-tryptophan was effective for the reaction between aldehyde and silyl enol ether [36, 37]. By using polymer-supported N-sulfonyl-fS)-tryptophan synthesized by polymerization of the chiral monomer, the polymeric version of Yamamoto s oxazaborohdinone catalyst was prepared by treatment with 3,5-bis(trifluoromethyl)phenyl boron dichloride ]38]. The polymeric chiral Lewis acid catalyst 55 worked well in the asymmetric aldol reaction of benzaldehyde with silyl enol ether derived from acetophenone to give [i-hydroxyketone with up to 95% ee, as shown in Scheme 3.16. In addition to the Mukaiyama aldol reaction, a Mannich-type reaction and an allylation reaction of imine 58 were also asymmetrically catalyzed by the same polymeric catalyst ]38]. [Pg.84]

Introduction and stereochemical control syn,anti and E,Z Relationship between enolate geometry and aldol stereochemistry The Zimmerman-Traxler transition state Anti-selective aldols of lithium enolates of hindered aryl esters Syn-selective aldols of boron enolates of PhS-esters Stereochemistry of aldols from enols and enolates of ketones Silyl enol ethers and the open transition state Syn selective aldols with zirconium enolates The synthesis of enones E,Z selectivity in enone formation from aldols Recent developments in stereoselective aldol reactions Stereoselectivity outside the Aldol Relationship A Synthesis ofJuvabione A Note on Stereochemical Nomenclature... [Pg.43]

Silyl enol ethers and silyl ketene acetals add to aldehydes in the presence of a stoichiometric amount of a Lewis acid (generally titanium tetrachloride, boron trifluoride etherate, tin(IV) chloride) with low levels or a complete lack of simple stereoselection. The anti.syn ratios usually range from 25 75 to 80 20, depending on the particular aldehyde, Lewis acid, enol ether and on the double bond stereochem-... [Pg.630]

The reaction of methyl (S)-4-methylbenzenesulfmate with cyclic silyl enol ethers under catalysis with boron trifluoride diethyl ether complex leads to addition to the enolate17. The resulting sulfoxide-substituted cycloalkanones, e.g., 15, are versatile starting materials for further reactions with chirality transfer from sulfur to carbon (Section D.5.). [Pg.239]

Symmetrical 1,5- diketones may be prepared by addition of a THF solution of a ketone lacking a1 - hydrogens to a solution of potassium in DMF - THF the central methylene appears to derive from the formal carbon of dimethylformamide [equation (42)].143 A more general preparation of 1,5- dicarbonyl compounds uses the boron trifluoride etherate catalysed reaction of silyl enol ethers with 3-methoxyallyl alcohols in nitromethane [equation (43)]. The... [Pg.75]

In the presence of boron trifluoride etherate, 39 (R=H and Ar==C6H5) reacts smoothly with silyl enol ethers (the achiral anion source) at low temperatures ( — 80 to — 30 °C) to provide a chromatographically separable mixture of diastereomeric acids from which either 40 or 41 can be obtained in good yield. Oxidative decarboxylation of the chiral auxiliary with freshly crystallized lead tetraacetate occurs without racemization of the newly formed chiral center to provide either 42 or 43 with 98% ee. Noteworthy is the fact that if pure cis isomers are used, such as 39, they undergo facile isomerization to a 65 35 cis trans mixture at the low reaction... [Pg.141]

Conjugate addition reactions, including the Robinson annulation, which make use of reactive Michael acceptors such as methyl vinyl ketone, can suffer from low yields of the desired adduct. The basic conditions required for enolate formation can cause polymerization of the vinyl ketone. Further difficulties arise from the fact that the Michael adduct 42 and the original cyclohexanone have similar acidities and reactivities, such that competitive reaction of the product with the vinyl ketone can ensue. These problems can be minimized by the use of acidic conditions. Sulfuric acid is known to promote the conjugate addition and intramolecular aldol reaction of 2-methylcyclohexanone and methyl vinyl ketone in 55% yield. Alternatively, a silyl enol ether can be prepared from the ketone and treated with methyl vinyl ketone in the presence of a Lewis acid such as a lanthanide triflate" or boron tri fluoride etherate (BF3 OEt2) and a proton source to effect the conjugate addition (followed by base-promoted aldol closure). [Pg.27]

A number of methods have been developed to bring about the directed aldol reaction between two different carbonyl compounds to give a mixed-aldol product. Most of them proceed from the preformed enolate or silyl enol ether of one of the components. With enolates, a number of metal counterions have been used and the best results have been obtained with lithium or boron enolates, although zinc or transition-metal enolates have found widespread use. For example, the aldol reaction of acetone with acetaldehyde under basic aqueous conditions is inefficient... [Pg.28]

Enantiomerically pure boron-based Lewis acids have also been used successfully in catalytic aldol reactions. Corey s catalyst (7.10a) provides good enantioselectivity with ketone-derived silyl enol ethers, including compound (7.11). Other oxazaborolidine complexes (7.13) derived from a,a-disubstituted a-amino acids give particularly high enantioselectivity, especially with the disubstituted ketene... [Pg.180]


See other pages where Boron enolates from silyl enol ethers is mentioned: [Pg.64]    [Pg.153]    [Pg.231]    [Pg.48]    [Pg.62]    [Pg.146]    [Pg.8]    [Pg.284]    [Pg.65]    [Pg.272]    [Pg.756]    [Pg.44]    [Pg.88]    [Pg.145]    [Pg.127]    [Pg.533]    [Pg.534]    [Pg.621]    [Pg.49]    [Pg.54]   
See also in sourсe #XX -- [ Pg.72 ]

See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Boron enol ethers

Boron enolate

Enolates from silyl enol ethers

Enolates silylation

From enol ethers

From ethers

From silyl enol ethers

From silyl ethers

Silyl boronate

Silyl enol ethers

Silyl enolate

Silyl enolates

Silyl ethers from enolates

© 2024 chempedia.info