Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silyl ethers from enolates

Benzyloxy-2-fluoro-2-methylpropionaIdehyde was prepared in optically active form from (5)-monoethyl 2-fluoro-2-methylmalonate, which had itself been prepared by enzymatic hydrolysis A number of enol silyl ethers or enolates were added to the aldehyde in processes that occur with fair to good diastereoselectivity [6] (equation 6) (Table 2)... [Pg.615]

Reduction of enones. Reduction of CH3Cu, prepared in situ from Cul and CH3Li in THF, with DIBAH in the presence of HMPA results in a form of copper hydride that effects efficient and selective 1,4-reduction of enals, enones, and enoates, and 1,6-reduction of dienones and dienoates. The reagent does not reduce isolated carbonyl groups or double bonds.2 It can also be used for regiospecific preparation of enol silyl ethers from an enone.2... [Pg.216]

Generation of enol silyl ethers from acyclic ketone precursors can be accomplished using the same kind of reagents. Depending on the reaction conditions, stereoselective formation of either the ( )- or the (Z)-isomer of the enol silyl ethers has been reported (Scheme 11). An in situ method of generating the enolate anion with lithium dialkylamides in the presence of trimethylchlorosilane leads to enhanced selection for the kinetically preferred enol silyl ether (e.g. 34a). Lithium r-octyl-r-butylamide (LOBA) is... [Pg.600]

Although it has been stated that di- and tri-haloketones and a-haloaldehydes (irrespective of the degree of halogen substitution) tend to yield only enol phosphate esters, further qualification of this statement is appropriate. The formation of silyl ethers from aldehydes or ketones and silyl phosphites has already been noted (see section III.A). Reactions between silyl phosphites and trifluoroacetaldehyde or perfluoroacetone and other similar compounds initially lead to silyl ethers of (a-hydroxyalkyl)phosphonic diesters in which all the fluorine is retained, although subsequent change leads to fluorinated enol phosphate esters. Sekine et also observed the formation of (a-silyloxyalkyl)phospho-... [Pg.246]

Schemp 6,14 Stereoselective formation of a-suhstituted enol silyl ethers from acylsilanes and vinyl lithium. Schemp 6,14 Stereoselective formation of a-suhstituted enol silyl ethers from acylsilanes and vinyl lithium.
A useful catalyst for asymmetric aldol additions is prepared in situ from mono-0> 2,6-diisopropoxybenzoyl)tartaric acid and BH3 -THF complex in propionitrile solution at 0 C. Aldol reactions of ketone enol silyl ethers with aldehydes were promoted by 20 mol % of this catalyst solution. The relative stereochemistry of the major adducts was assigned as Fischer- /ir o, and predominant /i -face attack of enol ethers at the aldehyde carbonyl carbon atom was found with the (/ ,/ ) nantiomer of the tartaric acid catalyst (K. Furuta, 1991). [Pg.61]

Another preparative method for the enone 554 is the reaction of the enol acetate 553 with allyl methyl carbonate using a bimetallic catalyst of Pd and Tin methoxide[354,358]. The enone formation is competitive with the allylation reaction (see Section 2.4.1). MeCN as a solvent and a low Pd to ligand ratio favor enone formation. Two regioisomeric steroidal dienones, 558 and 559, are prepared regioselectively from the respective dienol acetates 556 and 557 formed from the steroidal a, /3-unsaturated ketone 555. Enone formation from both silyl enol ethers and enol acetates proceeds via 7r-allylpalladium enolates as common intermediates. [Pg.364]

Although ethereal solutions of methyl lithium may be prepared by the reaction of lithium wire with either methyl iodide or methyl bromide in ether solution, the molar equivalent of lithium iodide or lithium bromide formed in these reactions remains in solution and forms, in part, a complex with the methyllithium. Certain of the ethereal solutions of methyl 1ithium currently marketed by several suppliers including Alfa Products, Morton/Thiokol, Inc., Aldrich Chemical Company, and Lithium Corporation of America, Inc., have been prepared from methyl bromide and contain a full molar equivalent of lithium bromide. In several applications such as the use of methyllithium to prepare lithium dimethyl cuprate or the use of methyllithium in 1,2-dimethyoxyethane to prepare lithium enolates from enol acetates or triraethyl silyl enol ethers, the presence of this lithium salt interferes with the titration and use of methyllithium. There is also evidence which indicates that the stereochemistry observed during addition of methyllithium to carbonyl compounds may be influenced significantly by the presence of a lithium salt in the reaction solution. For these reasons it is often desirable to have ethereal solutions... [Pg.106]

Both the Af-fluorosulfonamides and the A -fluoroammonium salts are very effective in the fluormation of enol acetates, enamines, silyl enol ethers, and enolates (Table 2) The reactions are thought to proceed through a mechanism which involves Sf 2 attack on the fluorine atom, but contributions from electron-transfer pathways also exist [65, 68, 73, 75, 76, 79, 80, 81, 82]... [Pg.155]

Examine the eleetrostatic potential map of eaeh nueleophile (enamine, silyl enol ether, lithium enolate and enol) with emphasis on the face of the nucleophilic alkene carbon. Rank the nucleophiles from most electron rich to least electron rich. What factors are responsible for this order (Hint For each molecule, consider an alternative Lewis structure to that given above that places a negative charge on the nucleophilic carbon.)... [Pg.166]

The synthetic problem is now reduced to cyclopentanone 16. This substance possesses two stereocenters, one of which is quaternary, and its constitution permits a productive retrosynthetic maneuver. Retrosynthetic disassembly of 16 by cleavage of the indicated bond furnishes compounds 17 and 18 as potential precursors. In the synthetic direction, a diastereoselective alkylation of the thermodynamic (more substituted) enolate derived from 18 with alkyl iodide 17 could afford intermediate 16. While trimethylsilyl enol ether 18 could arise through silylation of the enolate oxygen produced by a Michael addition of a divinyl cuprate reagent to 2-methylcyclopentenone (19), iodide 17 can be traced to the simple and readily available building blocks 7 and 20. The application of this basic plan to a synthesis of racemic estrone [( >1] is described below. [Pg.162]

A high degree of syn selectivity can be obtained from the addition of enamines to nitroalkenes. In this case, the syn selectivity is largely independent of the geometry of the acceptor, as well as the donor, double bond. Next in terms of selectivity, are the addition of enolates. However, whether one obtains syn or anti selectivity is dependent on both the geometry of the acceptor and the enolate double bond, whereas anti selectivity of a modest and unreliable level is obtained by reaction of enol silyl ethers with nitroalkenes under Lewis acid catalysis. [Pg.1011]

The enol acetates, in turn, can be prepared by treatment of the parent ketone with an appropriate reagent. Such treatment generally gives a mixture of the two enol acetates in which one or the other predominates, depending on the reagent. The mixtures are easily separable. An alternate procedure involves conversion of a silyl enol ether (see 12-22) or a dialkylboron enol ether (an enol borinate, see p. 560) to the corresponding enolate ion. If the less hindered enolate ion is desired (e.g., 126), it can be prepared directly from the ketone by treatment with lithium diisopropylamide in THE or 1,2-dimethoxyethane at —78°C. ... [Pg.554]

Fig. 1 Charge-transfer absorption spectra of enol silyl ethers complexes with re-acceptors. (a) Spectral changes accompanying the incremental additions of cyclohexanone enol silyl ether [2] to chloranil in dichloromethane. Inset Benesi-Hildebrand plot, (b) Charge-transfer absorption spectra of chloranil complexes showing the red shift in the absorption maxima with decreasing IP of the enol silyl ethers, (c) Comparative charge-transfer spectra of EDA complexes of a-tetralone enol silyl ether [6] showing the red shift in the absorption maxima with increasing EAs of the acceptors tetracyanoben-zene (TCNB), 2,6-dichlorobenzoquinone (DCBQ), chloranil (CA), and tetracyanoqui-nodimethane (TCNQ). Reproduced with permission from Ref. 37. Fig. 1 Charge-transfer absorption spectra of enol silyl ethers complexes with re-acceptors. (a) Spectral changes accompanying the incremental additions of cyclohexanone enol silyl ether [2] to chloranil in dichloromethane. Inset Benesi-Hildebrand plot, (b) Charge-transfer absorption spectra of chloranil complexes showing the red shift in the absorption maxima with decreasing IP of the enol silyl ethers, (c) Comparative charge-transfer spectra of EDA complexes of a-tetralone enol silyl ether [6] showing the red shift in the absorption maxima with increasing EAs of the acceptors tetracyanoben-zene (TCNB), 2,6-dichlorobenzoquinone (DCBQ), chloranil (CA), and tetracyanoqui-nodimethane (TCNQ). Reproduced with permission from Ref. 37.
Fig. 2 Mulliken correlation of the ionization potentials (IP) of various enol silyl ethers with the charge-transfer transition energies (/jvct) of their EDA complexes with chloranil. Reproduced with permission from Ref. 36. Fig. 2 Mulliken correlation of the ionization potentials (IP) of various enol silyl ethers with the charge-transfer transition energies (/jvct) of their EDA complexes with chloranil. Reproduced with permission from Ref. 36.
The facile nitration of a wide variety of ketones with TNM in Table 2 is illustrative of the synthetic utility of enol silyl ethers in facilitating a-substitution of carbonyl derivatives. It is necessary to emphasize here that the development of a strong charge-transfer (orange to red) coloration immediately upon the mixing of various ESEs with TNM invariably precedes the actual production of a-nitroketones in the thermal nitration (in the dark). The increasing conversion based on the time/yields listed in Table 2 qualitatively follows a trend in which electron-rich ESE from 6-methoxy-a-tetralone reacts faster than the relatively electron-poor ESE from cyclohexanone. [Pg.206]

Comments on the thermal nitration of enol silyl ethers with TNM. The strikingly similar color changes that accompany the photochemical and thermal nitration of various enol silyl ethers in Table 2 indicates that the preequilibrium [D, A] complex in equation (15) is common to both processes. Moreover, the formation of the same a-nitroketones from the thermal and photochemical nitrations suggests that intermediates leading to thermal nitration are similar to those derived from photochemical nitration. Accordingly, the differences in the qualitative rates of thermal nitrations are best reconciled on the basis of the donor strengths of various ESEs toward TNM as a weak oxidant in the rate-limiting dissociative thermal electron transfer (kET), as described in Scheme 4.40... [Pg.208]


See other pages where Silyl ethers from enolates is mentioned: [Pg.26]    [Pg.5]    [Pg.131]    [Pg.554]    [Pg.240]    [Pg.220]    [Pg.5]    [Pg.371]    [Pg.214]    [Pg.503]    [Pg.525]    [Pg.458]    [Pg.144]    [Pg.63]    [Pg.302]    [Pg.1027]    [Pg.137]    [Pg.313]    [Pg.63]    [Pg.302]    [Pg.940]    [Pg.273]    [Pg.199]    [Pg.201]    [Pg.203]    [Pg.207]   
See also in sourсe #XX -- [ Pg.220 ]




SEARCH



1.4- Dicarbonyl compounds from silyl enol ethers

Boron enolates from silyl enol ethers

Chlorotrimethylsilane silyl enol ethers from

Conjugate addition silyl enol ethers from

Enol ethers, silyl from aldehydes

Enol ethers, silyl from enolate anions

Enolates from silyl enol ethers

Enolates from silyl enol ethers

Enolates silylation

Ethers, silyl enol from esters

From enol ethers

From ethers

From silyl enol ethers

From silyl enol ethers

From silyl ethers

Ketones from silyl enol ethers

Palladium enolates from silyl enol ethers

Radical cations from silyl enol ethers

Silyl enol ethers

Silyl enol ethers from carbonyl compounds

Silyl enol ethers iodides from

Silyl enol ethers preparation from trimethylsilyl esters and

Silyl enolate

Silyl enolates

Steroidal, from silyl enol ethers

Subject from enol silyl ethers

© 2024 chempedia.info