Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal counterion

The solvent employed in asymmetric catalytic reactions may also have a dramatic influence on the reaction rate as well as the enantioselectivity, possibly because the solvent molecule is also involved in the catalytic cycle. Furthermore, the reaction temperature also has a profound influence on stereoselectivity. The goal of asymmetric hydrogenation or transfer hydrogenation studies is to find an optimal condition with a combination of chiral ligand, counterion, metal, solvent, hydrogen pressure, and reaction temperature under which the reactivity and the stereoselectivity of the reaction will be jointly maximized. [Pg.389]

The effect is more than just a matter of pH. As shown in Fig. XV-14, phospholipid monolayers can be expanded at low pH values by the presence of phosphotungstate ions [123], which disrupt the stmctival order in the lipid film [124]. Uranyl ions, by contrast, contract the low-pH expanded phase presumably because of a type of counterion condensation [123]. These effects caution against using these ions as stains in electron microscopy. Clearly the nature of the counterion is very important. It is dramatically so with fatty acids that form an insoluble salt with the ion here quite low concentrations (10 M) of divalent ions lead to the formation of the metal salt unless the pH is quite low. Such films are much more condensed than the fatty-acid monolayers themselves [125-127]. [Pg.557]

It turned out that the dodecylsulfate surfactants Co(DS)i Ni(DS)2, Cu(DS)2 and Zn(DS)2 containing catalytically active counterions are extremely potent catalysts for the Diels-Alder reaction between 5.1 and 5.2 (see Scheme 5.1). The physical properties of these micelles have been described in the literature and a small number of catalytic studies have been reported. The influence of Cu(DS)2 micelles on the kinetics of quenching of a photoexcited species has been investigated. Interestingly, Kobayashi recently employed surfactants in scandium triflate catalysed aldol reactions". Robinson et al. have demonshuted that the interaction between metal ions and ligand at the surface of dodecylsulfate micelles can be extremely efficient. ... [Pg.139]

Further evidence for an increased efficiency of complexation in the presence of micellar aggregates with bivalent metal counterions is presented in Table 5.4. The apparent rate constants of the reaction of 5.1c with 5.2 in the presence of micelles of Co(DS)2, Ni(DS)2, Cu(DS)2 and Zn(DS)2 are compared to the rate constants for the corresponding bivalent metal ion - dienophile complexes in the absence of micelles. The latter data are not dependent on the efficiency of the formation of the catalyst - dienophile complex whereas possible incomplete binding will certainly be reflected in the former. The good correlations between 1 and and the absence of a correlation between and... [Pg.140]

The aromatic shifts that are induced by 5.1c, 5.If and S.lg on the H-NMR spectrum of SDS, CTAB and Zn(DS)2 have been determined. Zn(DS)2 is used as a model system for Cu(DS)2, which is paramagnetic. The cjkcs and counterion binding for Cu(DS)2 and Zn(DS)2 are similar and it has been demonstrated in Chapter 2 that Zn(II) ions are also capable of coordinating to 5.1, albeit somewhat less efficiently than copper ions. Figure 5.7 shows the results of the shift measurements. For comparison purposes also the data for chalcone (5.4) have been added. This compound has almost no tendency to coordinate to transition-metal ions in aqueous solutions. From Figure 5.7 a number of conclusions can be drawn. (1) The shifts induced by 5.1c on the NMR signals of SDS and CTAB... [Pg.145]

Charge-Transfer Salts. Most charge-transfer salts can be prepared by direct mixing of donors and acceptors in solution. Semiconducting salts of TCNQ have been prepared with a variety of both organic and inorganic counterions. Simple salts of the type TCNQ can be obtained by direct reaction of a metal such as copper or silver with TCNQ in solution. Solutions of metal iodides can be used in place of the metals, and precipitation of the TCNQ salt occur direcdy (24). [Pg.242]

Precipitate formation can occur upon contact of iajection water ions and counterions ia formation fluids. Soflds initially preseat ia the iajectioa fluid, bacterial corrosioa products, and corrosion products from metal surfaces ia the iajectioa system can all reduce near-weUbore permeability. Injectivity may also be reduced by bacterial slime that can grow on polymer deposits left ia the wellbore and adjacent rock. Strong oxidising agents such as hydrogen peroxide, sodium perborate, and occasionally sodium hypochlorite can be used to remove these bacterial deposits (16—18). [Pg.189]

Pyrazole and its C-methyl derivatives acting as 2-monohaptopyrazoles in a neutral or slightly acidic medium give M(HPz) X, complexes where M is a transition metal, X is the counterion and m is the valence of the transition metal, usually 2. The number of pyrazole molecules, n, for a given metal depends on the nature of X and on the steric effects of the pyrazole substituents, especially those at position 3. Complexes of 3(5)-methylpyrazole with salts of a number of divalent metals involve the less hindered tautomer, the 5-methylpyrazole (209). With pyrazole and 4- or 5-monosubstituted pyrazoles M(HPz)6X2... [Pg.225]

Otherwise, the effect of metal counterion on the reaction has not been... [Pg.419]

The thermodynamic analysis of the selectivity of ion exchange with the participation of ions of quaternary ammonium bases [56--58] has shown that an increase in bonding selectivity, when metal ions are replaced by organic ions, which is usually accompanied by an increase in entropy of the system (Table 5). It follows from Table 5 that a drastic increase in bonding selectivity upon passing to a triethylbenzylammonium counterion (the most complex ion) is due to a considerable increase in the entropy of the system. [Pg.19]

With a-alkyl-substituted chiral carbonyl compounds bearing an alkoxy group in the -position, the diastereoselectivity of nucleophilic addition reactions is influenced not only by steric factors, which can be described by the models of Cram and Felkin (see Section 1.3.1.1.), but also by a possible coordination of the nucleophile counterion with the /J-oxygen atom. Thus, coordination of the metal cation with the carbonyl oxygen and the /J-alkoxy substituent leads to a chelated transition state 1 which implies attack of the nucleophile from the least hindered side, opposite to the pseudoequatorial substituent R1. Therefore, the anb-diastereomer 2 should be formed in excess. With respect to the stereogenic center in the a-position, the predominant formation of the anft-diastereomer means that anti-Cram selectivity has occurred. [Pg.36]

The stereochemical outcome and the diastereoselectivity of the addition of the anion of diethyl propanedioate to a,/ -unsaturated sulfoxides is dependent on the reaction solvent, the metal counterion and the geometry of the a,/ -unsaturated sulfoxide1 - 3. [Pg.1041]

In general, (Z)-[2-(4-methylphenylsulfmyl)ethenyl]benzenes undergo addition with higher diastereoselectivity than their. -counterparts. The stereochemical outcome for ( )-[2-(4-methyl-phenylsulfinyl)ethcnyl]benzene is more sensitive to the metal counterion and reaction solvent1,2. For ( )-[2-(4-methylphenylsulfmyl)ethenyl]benzene a reverse in product diastereoselection is observed when the metal counterion/solvent is changed from Na/ethanol to Li/THF1. [Pg.1041]

The catalytic activity of micelles bearing catalytically active metal counterions (Lewis acid-surfactant combined catalysts, LASCs) on Diels-Alder reactions was recently investigated [72a, 76]. [Pg.176]


See other pages where Metal counterion is mentioned: [Pg.330]    [Pg.306]    [Pg.491]    [Pg.330]    [Pg.306]    [Pg.491]    [Pg.380]    [Pg.559]    [Pg.169]    [Pg.178]    [Pg.5]    [Pg.22]    [Pg.467]    [Pg.92]    [Pg.412]    [Pg.339]    [Pg.536]    [Pg.37]    [Pg.195]    [Pg.388]    [Pg.392]    [Pg.167]    [Pg.165]    [Pg.533]    [Pg.44]    [Pg.36]    [Pg.103]    [Pg.176]    [Pg.226]    [Pg.227]    [Pg.243]    [Pg.23]    [Pg.23]    [Pg.455]    [Pg.56]    [Pg.779]    [Pg.212]    [Pg.17]   
See also in sourсe #XX -- [ Pg.55 ]




SEARCH



Alkali metal counterion

Counterion

Counterions

Enolates metal counterion, effect on reactivity

Metal counterions

Metal counterions

© 2024 chempedia.info