Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enols, from

The condensation conditions must be as mild as possible, because we want to get only the most stable of the three possible enols (from the aldehyde). Though you could not haye predicted the exact conditions either for the double bond. cleayage or for the condensation, you should haye seen that control was possible as in each case the two functional groups are different enough. ( J. Amer. Chem. Soc.. 1960, 636 J. Org. Chem.. 1964, 29, 3740 ... [Pg.62]

The selective intermolecular addition of two different ketones or aldehydes can sometimes be achieved without protection of the enol, because different carbonyl compounds behave differently. For example, attempts to condense acetaldehyde with benzophenone fail. Only self-condensation of acetaldehyde is observed, because the carbonyl group of benzophenone is not sufficiently electrophilic. With acetone instead of benzophenone only fi-hydroxyketones are formed in good yield, if the aldehyde is slowly added to the basic ketone solution. Aldols are not produced. This result can be generalized in the following way aldehydes have more reactive carbonyl groups than ketones, but enolates from ketones have a more nucleophilic carbon atom than enolates from aldehydes (G. Wittig, 1968). [Pg.56]

Although ethereal solutions of methyl lithium may be prepared by the reaction of lithium wire with either methyl iodide or methyl bromide in ether solution, the molar equivalent of lithium iodide or lithium bromide formed in these reactions remains in solution and forms, in part, a complex with the methyllithium. Certain of the ethereal solutions of methyl 1ithium currently marketed by several suppliers including Alfa Products, Morton/Thiokol, Inc., Aldrich Chemical Company, and Lithium Corporation of America, Inc., have been prepared from methyl bromide and contain a full molar equivalent of lithium bromide. In several applications such as the use of methyllithium to prepare lithium dimethyl cuprate or the use of methyllithium in 1,2-dimethyoxyethane to prepare lithium enolates from enol acetates or triraethyl silyl enol ethers, the presence of this lithium salt interferes with the titration and use of methyllithium. There is also evidence which indicates that the stereochemistry observed during addition of methyllithium to carbonyl compounds may be influenced significantly by the presence of a lithium salt in the reaction solution. For these reasons it is often desirable to have ethereal solutions... [Pg.106]

CH3I should approach the enolate from the direction that simultaneously allows its optimum overlap with the electron-donor orbital on the enolate (this is the highest-occupied molecular orbital or HOMO), and minimizes its steric repulsion with the enolate. Examine the HOMO of enolate A. Is it more heavily concentrated on the same side of the six-membered ring as the bridgehead methyl group, on the opposite side, or is it equally concentrated on the two sides A map of the HOMO on the electron density surface (a HOMO map ) provides a clearer indication, as this also provides a measure of steric requirements. Identify the direction of attack that maximizes orbital overlap and minimizes steric repulsion, and predict the major product of each reaction. Do your predictions agree with the thermodynamic preferences Repeat your analysis for enolate B, leading to product B1 nd product B2. [Pg.169]

The addition of boron enolates to imincs is useful for the construction of anti-fi-amino acid derivatives8. On the other hand, it is possible to control the direction of the diastereoselective addition of enolates from (A)-phenyl alkanethioates with imines9. [Pg.760]

The equilibrium ratios of enolates for several ketone-enolate systems are also shown in Scheme 1.1. Equilibrium among the various enolates of a ketone can be established by the presence of an excess of ketone, which permits reversible proton transfer. Equilibration is also favored by the presence of dissociating additives such as HMPA. The composition of the equilibrium enolate mixture is usually more closely balanced than for kinetically controlled conditions. In general, the more highly substituted enolate is the preferred isomer, but if the alkyl groups are sufficiently branched as to interfere with solvation, there can be exceptions. This factor, along with CH3/CH3 steric repulsion, presumably accounts for the stability of the less-substituted enolate from 3-methyl-2-butanone (Entry 3). [Pg.6]

Chelation affects the stereochemistry of enolate formation. For example, the formation of the enolates from a-siloxyesters is Z for LiHMDS, but E for LiTMP.19... [Pg.11]

These and other reductive methods for generating enolates from enones are discussed more fully in Chapter 5. [Pg.17]

The E-boron enolate from cyclohexanone shows a preference for the anti aldol product. The ratio depends on the boron alkyl groups and is modest (2 1) with di-n-butylboron but greater than 20 1 for cyclopentyl- -hexylboron.16... [Pg.73]

Tin(II) enolates having 3 -benzyloxy substituents are subject to chelation control. The enolate from 2-(benzyloxymethyl)-3-pentanone gave mainly 2,2 -syn-2,2>-syn product, a result that is consistent with a chelated TS.108... [Pg.105]

Derivatives with various substituted sulfonamides have been developed and used to form enolates from esters and thioesters.137 An additional feature of this chiral auxiliary is the ability to select for syn or anti products, depending upon choice of reagents and reaction conditions. The reactions proceed through an acyclic TS, and diastereoselectivity is determined by whether the E- or Z-enolate is formed.138 /-Butyl esters give A-enolates and anti adducts, whereas phenylthiol esters give syn adducts.136... [Pg.118]

A jy -diastereoselective aldol reaction based on titanium enolates from (A)-l-benzyloxy-2-methyl-3-pentanone was developed by Solsona et al. (Equation (12)).64 The titanium enolate of this chiral ketone afforded the corresponding syn-syn aldol adducts in high yields and diastereomeric ratios with a broad range of aldehydes. [Pg.417]

To generate an enolate from a carbonyl substrate, a suitable base should be chosen to meet two criteria ... [Pg.72]

TABLE 3 5. Reaction of Aldehydes with the Enolate from Diethyl Ketone and Bromoborane (R,R)-55b... [Pg.153]

The methods previously used to obtain single aldol products (or their dehydrated derivatives) from reactants where several aldol products are possible8 include the reaction of bromozinc enolates, from a-bromo-ketones, with aldehydes 9 the reaction of bromomagnesium enolates, from either a-bromoketones or from ketones and bromomagnesium... [Pg.98]

Nucleophilic addition of ester-derived enolate to the bicyclo[3.3.0]octan-2-one system of diacetone glucos-3-ulose usually occurs at the convex jS-face of the carbonyl (as for other nucleophiles), except for senecioate-derived enolate (from 3-methyl cro-tonate) for which a-attack in diethylether solvent is in contrast to the jS-face attack in THF the reason for this anomalous behaviour is not clear. [Pg.357]

The stereoselective introduction of both benzyl groups simultaneously in one step seemed to be particularly attractive for a short synthesis of a- hy-droxylated lactone lignans from malic acid (99). Such a simultaneous double alkylation requires the formation of a chiral l,3-diene-l,4-diolate, which was not known. On the other hand, achiral 1,3-diene-1,4-diolates (di-enolates) have been previously prepared by Garrett et al. [58] and subsequently employed for the synthesis of racemic lignans by Snieckus [59] and Pohmakotr [60]. With knowledge of the synthesis and reactivity of di-enolates, we planned to prepare chiral di-enolates from dioxolanones and to alkylate these di-enolates in a stereocontrolled manner (Scheme 22). For the development of the described double deprotonation/alkylation strategy, tert-hutyl... [Pg.209]

Sodium hydride and potassium hydride can also be used to prepare enolates from ketones. The reactivity of the metal hydrides is somewhat dependent on the means of preparation and purification of the hydride.5... [Pg.5]

Lithium-ammonia reduction of a,/ -unsaturated ketones (entry 6, Scheme 1.4) provides a very useful method for generating specific enolates.26 The desired starting materials are often readily available, and the position of the double bond in the enone determines the structure of the resulting enolate. This and other reductive methods for generating enolates from enones will be discussed more frilly in Chapter 5. Another very important method for specific enolate generation, the addition of organometallic reagents to enones, will be discussed in Chapter 8. [Pg.11]

The A-boron enolate from cyclohexanone shows a preference for the anti ketol product. [Pg.71]


See other pages where Enols, from is mentioned: [Pg.243]    [Pg.514]    [Pg.958]    [Pg.66]    [Pg.70]    [Pg.23]    [Pg.4]    [Pg.125]    [Pg.65]    [Pg.450]    [Pg.319]    [Pg.298]    [Pg.66]    [Pg.85]    [Pg.455]    [Pg.168]    [Pg.75]    [Pg.140]    [Pg.241]    [Pg.21]    [Pg.298]    [Pg.105]    [Pg.571]    [Pg.956]   


SEARCH



© 2024 chempedia.info