Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol ethers silyl, cyclic

Shibata successfully adapted the asymmetric transfer fluorination to cyclic silyl enol ethers, cyclic allyl silanes and oxindoles, illustrated in Schemes 13.1-13.3, as a catalytic method (Scheme 13.6) [16]. Similar reaction conditions were identified for all three substrates, including the use of stoichiometric NFSI as the electrophilic fluorine source and a stoichiometric inorganic base additive. It was observed that bis-Cinchona alkaloid (DHQ)2PHAL was best for cyclic silyl enol ethers (X = 0), (DHQ)2PYR (Scheme 13.2) was best for cyclic allyl silanes (X = CH2), while (DHQD)2AQN was best for oxindoles. A similar method was applied to cyclic enol ethers, providing products in modest ee s [17]. [Pg.469]

Cyclic and acyclic silyl enol ethers can be nitrated with tetranitromethane to give ct-nitro ketones in 64-96% yield fEqs. 2.42 and 2.43. " The mechanism involves the electron transfer from the silyl enol ether to tetranitromethane. A fast homolydc conphng of the resultant cadon radical of silyl enol ether with NO leads tn ct-nitro ketones. Tetranitromethane is a neutral reagent it is commercially available or readdy prepared. " ... [Pg.16]

The Lewis acid mediated addition of silyl enol ethers or silylketcne acetals to oc-alkoxyaldehydcs is the most versatile and reliable method of providing chelation control in aldol-type additions3. The stereochemical outcome is as predicted by Cram s cyclic model11 ... [Pg.566]

If there is no other interaction, the reaction proceeds through an acyclic TS and steric factors determine the amount of syn versus anti addition. This is the case with BF3, where the tetracoordinate boron-aldehyde adduct does not offer any free coordination sites for formation of a cyclic TS. Stereoselectivity increases with the steric bulk of the silyl enol ether substituent R1.50... [Pg.82]

Certain other metal ions also exhibit catalysis in aqueous solution. Two important criteria are rate of ligand exchange and the acidity of the metal hydrate. Metal hydrates that are too acidic lead to hydrolysis of the silyl enol ether, whereas slow exchange limits the ability of catalysis to compete with other processes. Indium(III) chloride is a borderline catalysts by these criteria, but nevertheless is effective. The optimum solvent is 95 5 isopropanol-water. Under these conditions, the reaction is syn selective, suggesting a cyclic TS.63... [Pg.84]

In general, BF3 -catalyzed Mukaiyama reactions lack a cyclic organization because of the maximum coordination of four for boron. In these circumstances, the reactions show a preference for the Felkin type of approach and exhibit a preference for syn stereoselectivity that is independent of silyl enol ether structure.119... [Pg.110]

Nitroalkenes are also reactive Michael acceptors under Lewis acid-catalyzed conditions. Titanium tetrachloride or stannic tetrachloride can induce addition of silyl enol ethers. The initial adduct is trapped in a cyclic form by trimethylsilylation.316 Hydrolysis of this intermediate regenerates the carbonyl group and also converts the ad-nitro group to a carbonyl.317... [Pg.192]

Nitration of the potassium enolates of cycloalkanones with pentyl nitrate81 or nitration of silyl enol ethers with nitronium tetrafluoroborate82 provides a method for the preparation of cyclic a-nitro ketones. Trifluoroacetyl nitrate generated from trifluoroacetic anhydride and ammonium nitrate is a mild and effective nitrating reagent for enol acetates (Eq. 2.41).83... [Pg.16]

The ring-opening of the cyclopropane nitrosourea 233 with silver trifiate followed by stereospecific [4 + 2] cycloaddition yields 234 [129]. (Scheme 93) Oxovanadium(V) compounds, VO(OR)X2, are revealed to be Lewis acids with one-electron oxidation capability. These properties permit versatile oxidative transformations of carbonyl and organosilicon compounds as exemplified by ring-opening oxygenation of cyclic ketones [130], dehydrogenative aroma-tization of 2-eyclohexen-l-ones [131], allylic oxidation of oc,/ -unsaturated carbonyl compounds [132], decarboxylative oxidation of a-amino acids [133], oxidative desilylation of silyl enol ethers [134], allylic silanes, and benzylic silanes [135]. [Pg.146]

The reaction is applicable to acyclic and cyclic enol ethers and to various (3-dicarbonyl compounds, but fails with silyl enol ethers and simple 1,2-disubstituted alkenes. When applicable, this route to furans is useful because the yields and regioselectivity are consistently satisfactory. The paper includes a preparation of the reagent by reaction of Mn(NO,)3 with Ac20 at 100° to give Mn,0(0Ac)7 H0Ac in 60% yield. [Pg.198]

The reaction with silyl enol ethers 3f and 3g gave only the [3 + 2] cycloadducts in comparison with effective formation of acyclic adduct 15 in the reaction with ketene silyl acetals 3a and 3e at lower reaction temperature. This can be explained by the reactivity of cationic intermediates 19 the intermediates from 3f and 3g are more reactive owing to lower stabilization by the oxy group than those from 3a and 3e, and react with the internal allene more efficiently to give the cycloadduct(s). Cyclic product 17a could be obtained at higher temperature via the reaction of 3a (entry 2). [Pg.112]

Use of TMSCl in combination with HMPA, DMAP, or TMEDA all favored 1,2-addition over 1,4-addition. Sequential a-alkoxyalkylcuprate conjugate addition, enolate trapping with TMSCl, and silyl enol ether alkylation provides a one-pot synthesis of tetrahydrofurans (Scheme 3.35) [129]. Cyclic enones afford as-fused tetrahydrofurans, while acyclic systems give complex mixtures of diastereomers. a-Alkoxyalkylcopper reagents also participate in allylic substitution reactions with ammonium salts [127]. [Pg.110]

A straightforward method for aldolizing unsymmetrical ketones on the more hindered side involves the use of catalytic titanium(lV) chloride in toluene at room temperature. For examples using acyclic and cyclic ketones, and linear, branched, and aromatic aldehydes, the regioselectivity varied from 7 1 to >99 1, while the symanti ratios were moderate to good, and yields were in the range 62-91%. In contrast to other methods, base is not required, and the ketone can be used as is (i.e. the silyl enol ether is not required). [Pg.10]

Enol ether or silyl enol ether as an alkene in RCM can be used by the second-generation mthenium carbene complex Ig. It affords the cyclic enol ether or silyl enol ether, which gives a cyclic ketone [Eqs. (6.17) and (6.18)] °... [Pg.159]

MeOC6H4, respectively. The titanium enolates were converted into silyl enol ethers 54 by treatment with chlorotrimethylsilane and lithium isopropoxide. Additionally, cyclic enones lb and Ic, and linear enones Id and le, are also good substrates for the asymmetric conjugate addition of phenyltitanium triisopropoxide, giving the corresponding arylation products with over 97% enantioselectivity. [Pg.73]

The asymmetric allylic C-H activation of cyclic and acyclic silyl enol ethers furnishes 1,5-dicarbonyl compounds and represents a surrogate of the Michael reaction [136]. When sufficient size discrimination is possible the C-H insertion is highly diastereoselective, as in the case of acyclic silyl enol ether 193 (Eq. 22). Reaction of aryldia-zoacetate 192 with 193 catalyzed by Rh2(S-DOSP)4 gives the C-H insertion product 194 (>90% de) in 84% enantiomeric excess. A second example is the reaction of the silyl enol ether 195 with 192 to form 196, a product that could not be formed from the usual Michael addition because the necessary enone would be in its tautomeric naphthol form (Eq. 23). [Pg.332]

On the basis of this pioneering work, Rubenbauer and Bach developed a Bi(OTf)3-catalyzed highly diastereoselective benzylation of silyl enol ethers [65]. Various cyclic and acyclic silyl enol ethers were amenable to this protocol (Scheme 24). Various a-substituted benzyl acetates were tested with terf-butyl-substituted silyl enol ether 31a, and the use of only 1 mol% of Bi(OTf)3 was enough to obtain the desired benzylated ketones 32 in high yields and with excellent diastereoselectivities (up to 95 5). Whereas a-nitro- (30a), ot-cyano- (30b) and a-methylester-substituted (30d) benzyl acetates gave the anti diastereoisomer as the major product, the phosphonate-substituted benzyl acetate (30c) exclusively resulted in the syn isomer (Scheme 24). [Pg.132]

Silyl enol ethers can also be used in the cyclopropanation reaction. Reissig showed that the reaction between methyl diazoacetate 53 and various enol ethers 52a-c using bu-box ligand 3 proceeded in moderate yields, as shown in Table 9.5 (Fig. 9.17fl), with trans/cis ratios up to 97 3 and ee between 32 and 49%. Pfaltz showed that cyclic enol ethers can be used as well." Cyclopentenyl enol ether 55 proceeded with methyl diazoacetate 53 and bu-box ligand 3 to afford the cyclopropanation products in 56% yield, a trans/cis ratio of 27 73, trans ee of 87% and cis ee of 92% (Fig. 9.11b, p. 544). [Pg.541]

Auto-tandem hydroformylation-cyclization, catalyzed by [RhCl(cod)]2, enables expansion of the organic skeleton of unsaturated silyl enol ethers (Scheme 10). Linear aldehydes generated in the hydroformylation step subsequently undergo Rh-catalyzed, intramolecular Mukaiyama aldol addition. Bicyclic ketones are also accessible from cyclic silyl enol ethers. [Pg.462]

The use of DAMgBr 39 in Et20/HMPA/TMSCPEt3N leads to the thermodynamic enolates or silyl enol ethers. This methodology is one of the best direct regiospecific preparations of thermodynamic silylenol ethers from unsymmetric cyclic ketones. [Pg.465]

The overall sequence of cyclopropanation of a cyclic silyl enol ether, chlorination with FeCl3, and dehydrochlorination represents a very reliable one-carbon ring expansion method for cycloalkanomer (Table 11). [Pg.26]

Double silylation is also observed in the reaction of a,/3-unsaturated ketones with a bis(disilanyl)dithiane, resulting in high yields of cyclic silyl enol ethers [Eq. (65)].58 The catalyst for this reaction is a cyclic bis(silyl)pal-ladium(II) bis(ferf-butyl isocyanide) complex. Analogous reactions of ester... [Pg.251]

Tanaka and co-workers have reported two routes for the catalytic synthesis of cyclic silyl enol ethers from silacylobutanes. The strained silacarbo-cycle174 can react directly with an acid chloride175,176 or in a three-component reaction with an organic halide and carbon monoxide177 to yield cyclic products that contain an Si-O bond [Eqs. (68) and (69)]. [Pg.253]

It appears likely that the reaction proceeds through the ene reaction pathway, although such an ene reaction pathway has not been previously recognized as a possible mechanism in the Mukaiyama aldol reaction. In general, an acyclic antiperiplanar transition-state model has been used to explain the formation of the syn-diastereomer from either ( )- or (Z)-silyl enol ethers [58]. However, the cyclic ene mechanism now provides another rationale for the. vyra-diastereose-lection regardless of the enol silyl ether geometiy (Figure 8C.7). [Pg.562]

The silatropic ene pathway, that is, direct silyl transfer from an silyl enol ether to an aldehyde, may be involved as a possible mechanism in the Mukaiyama aldol-type reaction. Indeed, ab initio calculations show that the silatropic ene pathway involving the cyclic (boat and chair) transition states for the BH3-promoted aldol reaction of the trihydrosilyl enol ether derived from acetaldehyde with formaldehyde is favored [60], Recently, we have reported the possible intervention of a silatropic ene pathway in the catalytic asymmetric aldol-type reaction of silyl enol ethers of thioesters [61 ]. Chlorine- and amine-containing products thus obtained are useful intermediates for the synthesis of carnitine and GABOB (Scheme 8C.26) [62],... [Pg.563]

On the other hand, indirect anodic oxidation of cyclic silyl enol ethers in the presence of iodide ions gives a-iodocyclic ketones (equation 39)43. [Pg.1205]


See other pages where Enol ethers silyl, cyclic is mentioned: [Pg.209]    [Pg.98]    [Pg.46]    [Pg.458]    [Pg.826]    [Pg.251]    [Pg.794]    [Pg.1414]    [Pg.132]    [Pg.395]    [Pg.448]    [Pg.353]    [Pg.610]    [Pg.253]    [Pg.306]    [Pg.905]    [Pg.209]    [Pg.1644]   


SEARCH



Cyclic enolate

Enolates cyclic

Enolates silylation

Ethere cyclic

Ethers cyclic

Silyl cyclic

Silyl enol ethers

Silyl enolate

Silyl enolates

© 2024 chempedia.info