Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biodiesel oil

Another potential source of liquid fuel is oil squeezed from seeds (seed oil). For example, some farmers in North Dakota, South Africa, and Australia are now using sunflower oil to replace diesel fuel. Oil seeds, found in a wide variety of plants, can be processed to produce a biodiesel oil composed mainly of carbon and hydrogen, which of course reacts with oxygen to produce carbon dioxide, water, and heat. The main advantage of seed oil as a fuel is that it is renewable. It is hoped that oil seed plants can be developed that will thrive under soil and climatic conditions unsuitable for corn and wheat. Ideally, fuel would be grown just like food crops. [Pg.390]

The fatty acid profile determines the properties of the oil and the resulting biodiesel. Oils with higher levels of saturated fatty acids have more resistance to oxidation and higher cetane numbers but tend to gel at temperatures that limit their usefulness in cold climates (Klopfenstein, 1985 Knothe et al., 2003 1997 Dunn, 2005a). Oils with high levels of polyunsaturates are prone to oxidation but frequently contain natural antioxidants that protect the oil. [Pg.508]

Higher tar removal efficiencies have been found with the use of vegetable and engine oils - but the tar content at the exit of a diesel and biodiesel oil scmbber has even been reported to increase, due probably to solvent evaporation [29]. [Pg.338]

Sorbent viscosity has also been found to play an important role, lower viscosities in general enhancing sorption efficiency [30], Other factors, however, may play a more decisive role. It has been found, for instance, that although diesel has lower viscosity than biodiesel oil, the sorption efficiency of diesel for light aromatic hydrocarbon tars is lower than that of biodiesel oil. This could be due to evaporation of some of the additives present in the diesel oil, for example, xylene and phenol. [Pg.339]

Biodiesel is diesel fuel produced from vegetable oils and other renewable resources. Many different types of oils can he used, including animal fats, used cooking oils, and soybean oil. Biodiesel is miscible with petroleum diesels and can he used in biodiesel-diesel blends. Most often blends are 20 percent biodiesel and 80 percent traditional diesel. Soy diesel can be used neat (100%), hut many other types of biodiesel are too viscous, especially in winter, and must be used in blends to remain fluid. The properties of the fuel will vaiy depending on the raw material used. Typical values for biodiesel are shown in Table 1. [Pg.162]

Production costs for biodiesel from soybean oil exceeds 2.00 per gal ( 0.53 per 1), compared to 0.55 to 0.65 per gal ( 0.15 to 0.17 per 1) for conventional diesel. The main cost in biodiesel is in the raw material. It takes about 7.7 lb (3.5 kg) of soybean oil valued at about 0.25 per lb (0.36 per kg) to make 1 gal (3.81) of biodiesel. Waste oils, valued at 1 per gal ( 3.79 per 1) or less, have the potential to provide low feedstock cost. However, much waste oil" is currently collected, reprocessed as yellow and white greases, and used for industrial purposes and as an animal feed supplement. Production of biodiesel... [Pg.162]

The first engines invented by Rudolf Diesel ran on groundnut oil, but because of the advent of relatively cheap oil this type of biodiesel never became commercially viable. Since about 1930 the diesel engine has been refined and fine tuned to run on the diesel fraction of crude oil, which consists mainly of saturated hydrocarbons. For this reason the modem diesel engine cannot run satisfactorily on a pure vegetable oil feedstock because of problems of high viscosity, deposit formation in the injection system and poor cold-start properties. Today, however, environmental... [Pg.173]

It is the last two problems, particularly in urban areas, that are causing most public concern. Most recent research into biodiesel has focused on vegetable oils such as soybean, sunflower, palm and rapeseed. Although animal fats have been considered, their availability in the quantities required have precluded serious utilization. [Pg.174]

In order to convert the raw oils into useful material, transesterification technology is used. The oil is reacted with a low molecular weight alcohol, commonly methanol, in the presence of a catalyst to form the fatty acid ester and glycerol (Scheme 6.1). The ester is subsequently separated from the glycerol and used as biodiesel, the glycerol being used as a raw material for fine chemicals production. Although the chemistry is simple, in order to make biodiesel commercially viable the process must be... [Pg.174]

Biodiesel from Transesterification of Cottonseed Oil by Heterogeneous catalysis... [Pg.153]

The transesterification reactions were conducted in a sealed 250 ml autoclave equipped with a stirrer. The molar ratio of methanol to oil was 12 1, reaction temperature was 200 C-230°C, and the ratio of catalyst to oil was about 2 wt%. Samples were taken out from the reaction mixture and biodiesel portions were separated by centrifuge. [Pg.154]

In our first experiment we decided to test the conversion of sunflower oil into biodiesel (16). Treatment of sunflower oil (1) with NaOMe in MeOH results in formation of a mixtme of fatty acid methyl esters (FAME), also known as biodiesel, and glycerol (2) (Figme 4.3). The reaction was performed with a six-fold molar excess of methanol with respect to sunflower oil at elevated temperatures (60°C) using a basic catalyst (NaOMe, 1% w/w with respect to sunflower oil). The CCS was equipped with a heating jacket to ensure isothermal conditions. The sunflower oil was preheated to 60°C and was pumped at 12.6 ml/min into one entrance of the CCS. Subsequently, a solution of NaOMe in MeOH was introduced through the other entrance at a flow rate of 3.1 ml per minute. After about 40 minutes, the system reaches steady state and the FAME containing some residual sunflower oil is coming... [Pg.45]

Considering the fact that the triglyceride oils used for the production of biodiesel are sulphur free, the use of biodiesel does not contribute towards the phenomenon of acid rain ... [Pg.271]

This prompted us to investigate the possibility of selectively hydrogenate highly unsaturated oils, unsuitable for the production of Biodiesel, in order to improve their oxidative stability while keeping the cold properties. [Pg.274]

Hydrotreating has been proposed by Arbokem Inc. in Canada as a means of converting Grade Tall Oil into biofuels and fuel additives. However, this process is a hydrogenation process which produces hydrocarbons rather than biodiesel. Recently a process for making biodiesel from crude tall oil has been proposed. It relies on the use of an acid catalysts or of an acyl halide for the esterification reaction, but no information is given on the properties of this fuel, particularly concerning the oxidative stability. [Pg.275]

Selective hydrogerration over low-loading, supported Cu catalysts has shown to be a valuable tool for the production of high quality biodiesel from Tall Oil, a byproduct of the Pulp Paper indrrstry. These resrrlts allow planning the use of a great variety of non-conventiorral oils with high iodine value for the production of biodiesel. [Pg.277]

Biodiesel is a fuel derived from renewable natural resources such as soybean and rapeseed and consists of alkyl esters derived from transesterification of triglycerides with methanol. In spite of all the advantages of biodiesel, such as low emissiotts, biodegradability, non-toxicity, and lubricity, the major hurdle in penetration of biodiesel is its high cost because of the expensive food grade refined vegetable oil feedstock. [Pg.279]

To produce biodiesel, refined vegetable oils are reacted with methanol in the presence of alkali catalysts such as sodium hydroxide, potassium hydroxide, and sodium methylate. The overall base-catalyzed process has several problems that also... [Pg.279]

The production of biodiesel from low quality oils such as animal fats, greases, and tropical oils is challenging due to the presence of undesirable components especially FFA and water. A pre-treatment step is required when using such high fatty-acid feedstock. Generally, this esterification pre-treatment employs liquid sulfuric acid catalyst which must subsequently be neutralized and either disposed of or recycled. However, requirement of high temperature, high molar ratio of alcohol to FFA, separation of the catalyst, enviromnental and corrosion related problems make its use costly for biodiesel production. [Pg.280]

Apart from a few reports" on solid acid catalyzed esterification of model compounds, to our knowledge utilization of solid catalysts for biodiesel production from low quality real feedstocks have been explored only recently. 12-Tungstophosphoric acid (TPA) impregnated on hydrous zirconia was evaluated as a solid acid catalyst for biodiesel production from canola oil containing up to 20 wt % free fatty acids and was found to give ester yield of 90% at 200°C. Propylsulfonic acid-functionalized mesoporous silica catalyst for esterification of FFA in flotation beef tallow showed a superior initial catalytic activity (90% yield) relative to a... [Pg.280]

Biomass is a renewable resource from which various useful chemicals and fuels can be produced. Glycerol, obtained as a co-product of the transesterification of vegetable oils to produce biodiesel, is a potential building block to be processed in biorefineries (1,2). Attention has been recently paid to the conversion of glycerol to chemicals, such as propanediols (3, 4), acrolein (5, 6), or glyceric acid (7, 8). [Pg.313]

Development of Alternate Fuels for Transportation, Electrical Power Generation and various Industrial Processes (e.g., biodiesel from renewable sources such as vegetable oils). [Pg.68]


See other pages where Biodiesel oil is mentioned: [Pg.401]    [Pg.77]    [Pg.1190]    [Pg.1099]    [Pg.78]    [Pg.401]    [Pg.77]    [Pg.1190]    [Pg.1099]    [Pg.78]    [Pg.162]    [Pg.162]    [Pg.162]    [Pg.163]    [Pg.185]    [Pg.153]    [Pg.53]    [Pg.42]    [Pg.44]    [Pg.45]    [Pg.271]    [Pg.272]    [Pg.273]    [Pg.275]    [Pg.279]    [Pg.280]    [Pg.285]    [Pg.291]    [Pg.67]    [Pg.105]    [Pg.86]   
See also in sourсe #XX -- [ Pg.401 ]




SEARCH



Biodiesel

© 2024 chempedia.info