Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatics production processes

Separation of Aromatic and Aliphatic Hydrocarbons. Aromatics extraction for aromatics production, treatment of jet fuel kerosene, and enrichment of gasoline fractions is one of the most important appHcations of solvent extraction. The various commercial processes are summarized in Table 4. [Pg.78]

Catalysts. Nearly aU. of the industrially significant aromatic alkylation processes of the past have been carried out in the Hquid phase with unsupported acid catalysts. For example, AlCl HF have been used commercially for at least one of the benzene alkylation processes to produce ethylbenzene (104), cumene (105), and detergent alkylates (80). Exceptions to this historical trend have been the use of a supported boron trifluoride for the production of ethylbenzene and of a soHd phosphoric acid (SPA) catalyst for the production of cumene (59,106). [Pg.53]

For aromatics production, similar considerations apply. Maximum yields of xylenes and other heavy aromatics can be obtained in cyclic units, but, again, at somewhat higher investments. The process selection, thus, again requires the balancing of process credits versus debits for the specific application. For light aromatics (benzene-toluene) production, however, the situation tends to favor a... [Pg.58]

Liquid solvents are used to extract either desirable or undesirable compounds from a liquid mixture. Solvent extraction processes use a liquid solvent that has a high solvolytic power for certain compounds in the feed mixture. For example, ethylene glycol has a greater affinity for aromatic hydrocarbons and extracts them preferentially from a reformate mixture (a liquid paraffinic and aromatic product from catalytic reforming). The raffinate, which is mainly paraffins, is freed from traces of ethylene glycol by distillation. Other solvents that could be used for this purpose are liquid sulfur dioxide and sulfolane (tetramethylene sulfone). [Pg.53]

The kinetic effect of increased pressure is also in agreement with the proposed mechanism. A pressure of 2000 atm increased the first-order rates of nitration of toluene in acetic acid at 20 °C and in nitromethane at 0 °C by a factor of about 2, and increased the rates of the zeroth-order nitrations of p-dichlorobenzene in nitromethane at 0 °C and of chlorobenzene and benzene in acetic acid at 0 °C by a factor of about 559. The products of the equilibrium (21a) have a smaller volume than the reactants and hence an increase in pressure speeds up the rate by increasing the formation of H2NO. Likewise, the heterolysis of the nitric acidium ion in equilibrium (22) and the reaction of the nitronium ion with the aromatic are processes both of which have a volume decrease, consequently the first-order reactions are also speeded up and to a greater extent than the zeroth-order reactions. [Pg.33]

Hydrocarbon Microbiology biodegradation mechanisms of oil products (gasoline, kerosene, diesel, etc.), pyrolysis, polycyclic aromatic hydrocarbons, chlorinated solvents, and ether fuels refining processes (e.g., oil product microbial desulfurization) and oil production processes (e.g., bacterial corrosion). [Pg.330]

A dual-bed catalyst system has been developed to tackle the key problems in benzene product impurity during heavy aromatics transalkylation processing over metal-supported zeolite catalysts. It was found that by introducing zeolite H-Beta as a complementary component to the conventional single-bed Pt/ZSM-12 catalyst, the cascaded dual-bed catalyst shows synergistic effect not only in catalytic stability but also in adjustments of benzene product purity and product yields and hence should represent a versatile catalyst system for heavy aromatics transalkylation. [Pg.432]

The study of the effects of process parameters reveals that (1) methane can be substantially reduced by higher pressure, shorter contact time, lower temperature, and lower H2/C0 ratio and (2) the aromatics production is greatly favored by lower H2/CO ratio at moderate temperature. [Pg.319]

OCTENAR [Octane enhancement by removing aromatics] A process for removing aromatic hydrocarbons from petroleum reformate by extractive distillation with N-formyl mor-phylane. The product can be blended with gasoline to increase its octane number — hence the name. A paraffin mixture is obtained as a side-product. Developed by Krupp Koppers from its MORPHYLANE and MORPHYLEX processes. [Pg.194]

Rexforming A petroleum refining process which combines Platforming with an aromatics extraction process using ethylene glycol. Developed in the 1950s by Universal Oil Products. [Pg.227]

The mechanism of this novel process is proposed to involve formation of a nine-membered ring, which after tautomerization undergoes an electrocylic ring closure to form the bicyclo[4.3.0]nonadienone intermediate. Elimination of ROH gives the aromatic product observed (Scheme 79). [Pg.641]

As a result of steric constraints imposed by the channel structure of ZSM-5, new or improved aromatics conversion processes have emerged. They show greater product selectivities and reaction paths that are shifted significantly from those obtained with constraint-free catalysts. In xylene isomerization, a high selectivity for isomerization versus disproportionation is shown to be related to zeolite structure rather than composition. The disproportionation of toluene to benzene and xylene can be directed to produce para-xylene in high selectivity by proper catalyst modification. The para-xylene selectivity can be quantitatively described in terms of three key catalyst properties, i.e., activity, crystal size, and diffusivity, supporting the diffusion model of para-selectivity. [Pg.272]

Although a detailed stereochemical study is not available, the generality and the ease of the reaction suggest that the process is concerted. The loss of carbon monoxide becomes particularly easy when an aromatic product is formed. [Pg.98]

Since toluene is nothing more than benzene with a methyl group attached, creating one from another is relatively easy. Benzene, toluene, and for that matter, xylenes too, are coproduced in the processes just described—coke making, cat reforming, and olefin plants operations. The ratio of benzene to the other aromatics production is rarely equal to the chemical feedstock requirements.. fo.r the three. One method for balancing supply and demand is toluene hydrodealkylation (HDA). This process accounts for 10—15% of the supply of benzene in the United States and is a good example of what can be done when one or more coproducts are produced in proportions out of balance with the marketplace. [Pg.33]

Pt-KBaL catalyst than over conventional reforming catalysts. However, the advantage diminishes as carbon number increases, so these technologies are primarily of interest for benzene production. It is therefore more efficient to complement conventional reforming with the zeolitic reforming process when a broader range of aromatic products is desired. Relatively large crystal size has been claimed to be beneficial for example in CP Chem s AROMAX process. Residual acidity on the catalyst has been shown to be detrimental [86]. [Pg.520]

Chapter 7 gives a review of the technology and applications of zeolites in liquid adsorptive separation of petrochemical aromatic hydrocarbons. The application of zeolites to petrochemical aromatic production may be the area where zeolites have had their largest positive economic impact, accounting for the production of tens of millions of tonnes of high-value aromatic petrochemicals annually. The nonaromatic hydrocarbon liquid phase adsorption review in Chapter 8 contains both general process concepts as well as sufficient individual process details for one to understand both commercially practiced and academic non-aromatic separations. [Pg.626]

In 2000 two major petrochemical companies installed process NMR systems on the feed streams to steam crackers in their production complexes where they provided feed forward stream characterization to the Spyro reactor models used to optimize the production processes. The analysis was comprised of PLS prediction of n-paraffins, /xo-paraffins, naphthenes, and aromatics calibrated to GC analysis (PINA) with speciation of C4-C10 for each of the hydrocarbon groups. Figure 10.22 shows typical NMR spectral variability for naphtha streams. Table 10.2 shows the PLS calibration performance obtained with cross validation for... [Pg.325]

Although the gem-dihalocyclopropanes are fairly stable compounds, they can participate — as has been shown in the above sections — in quite a number of chemical transformations. Several reactions between dihalocarbenes and alkenes have been described in which no dihalocyclopropane formation could be observed that these intermediates might have been produced was only inferred from the type of products finally isolated. A typical process of this type is the e/ufo-addition of dihalocarbenes to norbomene and norbomadiene as discussed above. Comparable rearrangements have been observed, when dichlorocarbene additions either lead to aromatic products or when they cycloadd to rather inert aromatic systems. In the latter case a ring-enlargement takes place. A reaction related to the concerted opening of two cyclopropane rings in a bicyclopropyl system as discussed above takes place when dichlorocarbene is added to spiro[2.4]hepta-4,6-diene [227]. [Pg.71]

Batch Stirred Tank H2S04/Oleum Aromatic Sulfonation Processes. Low molecular weight aromatic hydrocarbons, such as benzene, toluene, xylene, and cumene, are sulfonated using molar quantities of 98—100% H2S04 in stirred glass-lined reactors. A condenser and Dean-Stark-type separator trap are installed on the reactor to provide for the azeotropic distillation and condensation of aromatic and water from the reaction, for removal of water and for recycling aromatic. Sulfone by-product is removed from the neutralized sulfonate by extraction/washing with aromatic which is recycled. [Pg.85]

A highly aromatic product boiling above 400° F. (the yield of which depends on the feed stock boiling range and on the process conditions)... [Pg.47]

In carrying out the alkylation of benzene the propylene tetramer is reacted with an excess of benzene in the presence of a Friedel-Crafts catalyst such as aluminum chloride, boron trifluoride, or hydrofluoric acid. With careful control of this reaction, yields of alkylate boiling from 500° to 650° F. are of the order of 80% of theory with the losses due to slight olefin degradation and dialkylation. Inspection of commercial aromatic products, believed to be typical of this process, indicates the composition to be that shown in... [Pg.331]


See other pages where Aromatics production processes is mentioned: [Pg.416]    [Pg.163]    [Pg.175]    [Pg.307]    [Pg.56]    [Pg.381]    [Pg.31]    [Pg.400]    [Pg.286]    [Pg.53]    [Pg.58]    [Pg.1299]    [Pg.138]    [Pg.221]    [Pg.260]    [Pg.26]    [Pg.78]    [Pg.245]    [Pg.519]    [Pg.520]    [Pg.11]    [Pg.26]    [Pg.186]    [Pg.233]    [Pg.438]    [Pg.304]    [Pg.439]    [Pg.56]   


SEARCH



Aromatic products

Aromatic products production

Aromatics production

Product aromatization

Production and uses of coke from aromatic residues by the delayed coking process

© 2024 chempedia.info