Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic products from

The feedstocks in question are primary distillation streams and some conversion products from catalytic cracking, coking, visbreaking, and residue conversion units. [Pg.402]

Fractions treated by this process are light products from the primary distillation LPG to Kerosene, or light products from thermal and catalytic cracking (visbreaking, coking, FCC). [Pg.404]

The composition of the products from the isomerization of an unsaturated compound under the influence of a catalytic amount of a base is governed by the relative thermodynamic stabilities of the starting compound and the product. Of particular synthetic interest are isomerizations in which there is an accumulation of an isomer in the isomerization sequence. Isolation of the desired intermediate in a reasonable state of purity is often a matter of careful selection of the base and the solvent. The following reactions are representative examples ... [Pg.87]

Acetoxybenzene is prepared by the reaction of benzene with Pd(OAc)2[325,342-345], This reaction is regarded as a potentially useful method for phenol production from benzene, if carried out with only a catalytic amount of Pd(OAc)2. Extensive studies have been carried out on this reaction in order to achieve a high catalytic turnover. In addition to oxygen and Cu(II) salts, other oxidants, such as HNOi, nitrate[346,347], potassium peroxodisulfate[348], and heteropoly acids[349,3S0], are used. HNO is said to... [Pg.76]

Commercial production of acetic acid has been revolutionized in the decade 1978—1988. Butane—naphtha Hquid-phase catalytic oxidation has declined precipitously as methanol [67-56-1] or methyl acetate [79-20-9] carbonylation has become the technology of choice in the world market. By-product acetic acid recovery in other hydrocarbon oxidations, eg, in xylene oxidation to terephthaUc acid and propylene conversion to acryflc acid, has also grown. Production from synthesis gas is increasing and the development of alternative raw materials is under serious consideration following widespread dislocations in the cost of raw material (see Chemurgy). [Pg.66]

Catalytic Oligomeri tion. Shell Chemical provides C —C linear internal olefin feedstock for detergent oxo alcohol production from its SHOP... [Pg.459]

Study of the mechanism of this complex reduction-Hquefaction suggests that part of the mechanism involves formate production from carbonate, dehydration of the vicinal hydroxyl groups in the ceUulosic feed to carbonyl compounds via enols, reduction of the carbonyl group to an alcohol by formate and water, and regeneration of formate (46). In view of the complex nature of the reactants and products, it is likely that a complete understanding of all of the chemical reactions that occur will not be developed. However, the Hquefaction mechanism probably involves catalytic hydrogenation because carbon monoxide would be expected to form at least some hydrogen by the water-gas shift reaction. [Pg.26]

Prior to methanation, the gas product from the gasifier must be thoroughly purified, especially from sulfur compounds the precursors of which are widespread throughout coal (23) (see Sulfurremoval and recovery). Moreover, the composition of the gas must be adjusted, if required, to contain three parts hydrogen to one part carbon monoxide to fit the stoichiometry of methane production. This is accompHshed by appHcation of a catalytic water gas shift reaction. [Pg.63]

Dehydrogenation. Dehydrogenation of / -butane was once used to make 1,3-butadiene, a precursor for synthetic mbber. There are currently no on-purpose butadiene plants operating in the United States butadiene is usually obtained as a by-product from catalytic cracking units. [Pg.402]

Liquid Fuels. Liquid fuels can be obtained as by-products of low temperature carbonization by pyrolysis, solvent refining, or extraction and gasification followed by catalytic conversion of either the coal or the products from the coal. A continuing iaterest ia Hquid fuels has produced activity ia each of these areas (44—46). However, because cmde oil prices have historically remained below the price at which synthetic fuels can be produced, commercialization awaits an economic reversal. [Pg.159]

Enzymatic Process. Chemically synthesized substrates can be converted to the corresponding amino acids by the catalytic action of an enzyme or the microbial cells as an enzyme source, t - Alanine production from L-aspartic acid, L-aspartic acid production from fumaric acid, L-cysteine production from DL-2-aminothiazoline-4-catboxyhc acid, D-phenylglycine (and D-/> -hydtoxyphenylglycine) production from DL-phenyUiydantoin (and DL-/)-hydroxyphenylhydantoin), and L-tryptophan production from indole and DL-serine have been in operation as commercial processes. Some of the other processes shown in Table 10 are at a technical level high enough to be useful for commercial production (24). Representative chemical reactions used ia the enzymatic process are shown ia Figure 6. [Pg.291]

Toluene, Benzene, and BTX Reeoveiy. The composition of aromatics centers on the C - and Cg-fraction, depending somewhat on the boihng range of the feedstock used. Most catalytic reformate is used directiy in gasoline. That part which is converted to benzene, toluene, and xylenes for commercial sale is separated from the unreacted paraffins and cycloparaffins or naphthenes by hquid—hquid extraction or by extractive distillation. It is impossible to separate commercial purity aromatic products from reformates by distillation only because of the presence of azeotropes, although comphcated further by the closeness in boihng points of the aromatics, t/o-paraffin, and unreacted C -, C -, and Cg-paraffins. [Pg.179]

Many agents have been proposed and patented including copper sulfate (34), zinc chloride (35), ferric chloride (36), aluminum chloride (36), and phosphoms pentoxide (37) ferric chloride, zinc chloride, and phosphoms pentoxide have been most widely used. The addition of these agents may vary from 0.1 to 3%, depending upon the feedstock and the desired characteristics of the product (Table 5) and all asphalt feedstocks do not respond to catalysts in the same way. Differences in feedstock composition are important qualifiers in determining the properties of the asphalt product. The important softening point-penetration relationship, which describes the temperature susceptibiUty of an asphalt, also varies with the source of the feedstock. Straight-reduced, air-blown, and air-blown catalytic asphalts from the same cmde feedstock also vary considerably. [Pg.364]

Nutritional Requirements. The nutrient requirements of mammalian cells are many, varied, and complex. In addition to typical metaboHc requirements such as sugars, amino acids (qv), vitamins (qv), and minerals, cells also need growth factors and other proteins. Some of the proteins are not consumed, but play a catalytic role in the cell growth process. Historically, fetal calf semm of 1—20 vol % of the medium has been used as a rich source of all these complex protein requirements. However, the composition of semm varies from lot to lot, introducing significant variabiUty in manufacture of products from the mammalian cells. [Pg.229]

A number of reductive procedures have found general applicability. a-Azidoketones may be reduced catalytically to the dihydropyrazines (80OPP265) and a direct conversion of a-azidoketones to pyrazines by treatment with triphenylphosphine in benzene (Scheme 55) has been reported to proceed in moderate to good yields (69LA(727)23l). Similarly, a-nitroketones may be reduced to the a-aminoketones which dimerize spontaneously (69USP3453279). The products from this reaction are pyrazines and piperazines and an intermolecular redox reaction between the initially formed dihydropyrazines may explain their formation. Normally, if the reaction is carried out in aqueous acetic acid the pyrazine predominates, but in less polar solvents over-reduction results in extensive piperazine formation. [Pg.185]

Strychiyne, strychnidine and tetrahydrostrychnine are all converted into dihydro-derivatives on catalytic hydrogenation, indicating the presence of one ethylenic linkage in these substances, and dihydrostrychnine in turn yields on electrolytic reduction dihydrostrychnidine and hexa-hydrostrychnine. The formation of this group of reduction products from strychnine may be represented thus —... [Pg.564]

The total yield of products from alkanecarboxyhc acids increases, in most cases, by addition of anhydrous hydrogen fluoride. The optimum hydrogen fluoride concentration is much higher than catalytic and is related to the basicity of a carbonyl group. A mechanism for the formation of both 1,1,1-trifluoroalkanes and bis(l,l-difluoroalkyl) ethers has been proposed [206] (equation 102)... [Pg.243]

An alternative route was later reported by Hall and Plant, who obtained 2 as well as the methyl derivative 110 in low yields, via the reaction of 5-aminotetrahydro-carbazoles with 2-chlorocyclohexanone, followed by dehydrogenation with palladium on charcoal of the intermediate octahydro derivatives 109 or 111 (53JCS116). The octahydro compounds 109 and 111 have also been reported as products from the reactions of suitable 1,3-phenylenediamines and 2-hydroxycyclohexanone in the presence of a catalytic amount of hydrochloric acid (53JCS4114). [Pg.23]

In much the same vein, the Mannich product from acetophenone with formaldehyde and pyrrolidine (44b) affords procyclidine (49) Dn reaction with cyclohexylmagnesium bromide. In an interesting variation, the ketone is first reacted with phenylmagnesium bromide. Catalytic hydrogenation of the carbinol (50) thus obtained iTin be stopped after the reduction of only one aromatic ring. ... [Pg.47]

Jessop and co-workers studied asymmetric hydrogenation reactions with the catalyst complex Ru(OAc)2(tolBINAP) dissolved in [BMIM][PFg]. In both reactions under investigation - the hydrogenation of tiglic acid (Scheme 5.2.10) and the hydrogenation of the precursor of the anti-inflammatory dmg ibuprofen (Scheme 5.2.11) - no CO2 was present during the catalytic transformation. However, SCCO2 was used in both cases to extract the reaction products from the reaction mixture when the reaction was complete. [Pg.231]

Heterogeneous catalytic systems offer the advantage that separation of the products from the catalyst is usually not a problem. The reacting fluid passes through a catalyst-filled reactor m the steady state, and the reaction products can be separated by standard methods. A recent innovation called catalytic distillation combines both the catalytic reaction and the separation process in the same vessel. This combination decreases the number of unit operations involved in a chemical process and has been used to make gasoline additives such as MTBE (methyl tertiai-y butyl ether). [Pg.226]

Kerosine, a distillate fraction heavier than naphtha, is normally a product from distilling crude oils under atmospheric pressures. It may also he obtained as a product from thermal and catalytic cracking or hydrocracking units. Kerosines from cracking units are usually less stable than those produced from atmospheric distillation and hydrocracking units due to presence of variable amounts of olefinic constituents. [Pg.45]


See other pages where Catalytic products from is mentioned: [Pg.187]    [Pg.263]    [Pg.658]    [Pg.187]    [Pg.263]    [Pg.658]    [Pg.440]    [Pg.100]    [Pg.88]    [Pg.409]    [Pg.251]    [Pg.457]    [Pg.481]    [Pg.213]    [Pg.174]    [Pg.333]    [Pg.504]    [Pg.239]    [Pg.125]    [Pg.2373]    [Pg.99]    [Pg.214]    [Pg.73]    [Pg.25]    [Pg.530]    [Pg.113]    [Pg.12]    [Pg.258]    [Pg.980]    [Pg.985]   
See also in sourсe #XX -- [ Pg.78 , Pg.79 , Pg.81 ]

See also in sourсe #XX -- [ Pg.78 , Pg.79 , Pg.81 ]




SEARCH



Catalytic Performances of Perovskite-Type Catalysts for H2 Production from Alcohols

Catalytic performances production from alcohols

Liquid product from catalytic

Liquid products from catalytic cracking

Nitric oxide catalytic production from

Products produced from catalytic cracking

© 2024 chempedia.info