Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Antioxidants examples

Inhibitor regenerators, which react with intermediates or products formed in the chain-stopping (termination) reaction so as to regenerate the original inhibitor or form another product capable of functioning as an antioxidant. Examples are dialkylphosphonates with hindered phenols or diphenoquinones with thiols. [Pg.391]

Typical processing stabilizers for polypropylene and butylated hydroxy-toluene (BHT) as the primary antioxidant and phosphates and phosphonates as secondary antioxidants. Examples of the latter that are commonly used are tetrakis-(2,4-di-terr-butyl-phenyl)-4-4 -bisphenylylenediphosphonite, distearyl-pentaerythrityl-diphosphonite, tris-(nonylphenyl)-phosphite, tris-(2,4-di-teft-butyl-phenyl)-phosphite and bis(2,4-di-ferr-butyl-phenyl)- pentaerythrityl-diphosphite. In commercial polypropylenes, phosphorous compounds are always used together with a sterically hindered phenol. The compounds are commonly added in concentrations between 0.05 and 0.25%. [Pg.108]

There are, indeed, many biological implications that have been triggered by the advent of fullerenes. They range from potential inhibition of HIV-1 protease, synthesis of dmgs for photodynamic therapy and free radical scavenging (antioxidants), to participation in photo-induced DNA scission processes [156, 157, 158, 159, 160, 161, 162 and 163]. These examples unequivocally demonstrate the particular importance of water-soluble fullerenes and are summarized in a few excellent reviews [141, 1751. [Pg.2420]

Antioxidants markedly retard the rate of autoxidation throughout the useful life of the polymer. Chain-terminating antioxidants have a reactive —NH or —OH functional group and include compounds such as secondary aryl amines or hindered phenols. They function by transfer of hydrogen to free radicals, principally to peroxy radicals. Butylated hydroxytoluene is a widely used example. [Pg.1008]

Peroxide-decomposing antioxidants destroy hydroperoxides, the sources of free radicals in polymers. Phosphites and thioesters such as tris(nonylphenyl) phosphite, distearyl pentaerythritol diphosphite, and dialkyl thiodipropionates are examples of peroxide-decomposing antioxidants. [Pg.1008]

Aldehydes fiad the most widespread use as chemical iatermediates. The production of acetaldehyde, propionaldehyde, and butyraldehyde as precursors of the corresponding alcohols and acids are examples. The aldehydes of low molecular weight are also condensed in an aldol reaction to form derivatives which are important intermediates for the plasticizer industry (see Plasticizers). As mentioned earlier, 2-ethylhexanol, produced from butyraldehyde, is used in the manufacture of di(2-ethylhexyl) phthalate [117-87-7]. Aldehydes are also used as intermediates for the manufacture of solvents (alcohols and ethers), resins, and dyes. Isobutyraldehyde is used as an intermediate for production of primary solvents and mbber antioxidants (see Antioxidaisits). Fatty aldehydes Cg—used in nearly all perfume types and aromas (see Perfumes). Polymers and copolymers of aldehydes exist and are of commercial significance. [Pg.474]

The FCC is to food-additive chemicals what the USP—NF is to dmgs. In fact, many chemicals that are used in dmgs also are food additives (qv) and thus may have monographs in both the USP—NF and in the FCC. Examples of food-additive chemicals are ascorbic acid [50-81-7] (see Vitamins), butylated hydroxytoluene [128-37-0] (BHT) (see Antioxidants), calcium chloride [10043-52-4] (see Calcium compounds), ethyl vanillin [121-32-4] (see Vanillin), ferrous fumarate [7705-12-6] and ferrous sulfate [7720-78-7] (see Iron compounds), niacin [59-67-6] sodium chloride [7647-14-5] sodium hydroxide [1310-73-2] (see lkaliand cm ORiNE products), sodium phosphate dibasic [7558-79-4] (see Phosphoric acids and phosphates), spearmint oil [8008-79-5] (see Oils, essential), tartaric acid [133-37-9] (see Hydroxy dicarboxylic acids), tragacanth [9000-65-1] (see Gums), and vitamin A [11103-57-4]. [Pg.446]

Typically, soHd stabilizers utilize natural saturated fatty acid ligands with chain lengths of Cg—C g. Ziac stearate [557-05-1/, ziac neodecanoate [27253-29-8] calcium stearate [1592-23-0] barium stearate [6865-35-6] and cadmium laurate [2605-44-9] are some examples. To complete the package, the soHd products also contain other soHd additives such as polyols, antioxidants, and lubricants. Liquid stabilizers can make use of metal soaps of oleic acid, tall oil acids, 2-ethyl-hexanoic acid, octylphenol, and nonylphenol. Barium bis(nonylphenate) [41157-58-8] ziac 2-ethyIhexanoate [136-53-8], cadmium 2-ethyIhexanoate [2420-98-6], and overbased barium tallate [68855-79-8] are normally used ia the Hquid formulations along with solubilizers such as plasticizers, phosphites, and/or epoxidized oils. The majority of the Hquid barium—cadmium formulations rely on barium nonylphenate as the source of that metal. There are even some mixed metal stabilizers suppHed as pastes. The U.S. FDA approved calcium—zinc stabilizers are good examples because they contain a mixture of calcium stearate and ziac stearate suspended ia epoxidized soya oil. Table 4 shows examples of typical mixed metal stabilizers. [Pg.550]

Phosphites. Tertiary phosphites are also commonly used and are particularly effective ia most mixed metal stabilizers at a use level of 0.25—1.0 phr. They can take part ia a number of different reactions duting PVC processing they can react with HCl, displace activated chlorine atoms on the polymer, provide antioxidant functionaHty, and coordinate with the metals to alter the Lewis acidity of the chloride salts. Typical examples of phosphites are triphenyl phosphite [101 -02-0], diphenyl decyl phosphite [3287-06-7], tridecyl phosphite [2929-86-4], and polyphosphites made by reaction of PCl with polyols and capping alcohols. The phosphites are often included in commercial stabilizer packages. [Pg.550]

The basic metal salts and soaps tend to be less cosdy than the alkyl tin stabilizers for example, in the United States, the market price in 1993 for calcium stearate was about 1.30— 1.60, zinc stearate was 1.70— 2.00, and barium stearate was 2.40— 2.80/kg. Not all of the coadditives are necessary in every PVC compound. Typically, commercial mixed metal stabilizers contain most of the necessary coadditives and usually an epoxy compound and a phosphite are the only additional products that may be added by the processor. The requited costabilizers, however, significantly add to the stabilization costs. Typical phosphites, used in most flexible PVC formulations, are sold for 4.00— 7.50/kg. Typical antioxidants are bisphenol A, selling at 2.00/kg Nnonylphenol at 1.25/kg and BHT at 3.50/kg, respectively. Pricing for ESO is about 2.00— 2.50/kg. Polyols, such as pentaerythritol, used with the barium—cadmium systems, sells at 2.00, whereas the derivative dipentaerythritol costs over three times as much. The P-diketones and specialized dihydropyridines, which are powerful costabilizers for calcium—zinc and barium—zinc systems, are very cosdy. These additives are 10.00 and 20.00/kg, respectively, contributing significantly to the overall stabilizer costs. Hydrotalcites are sold for about 5.00— 7.00/kg. [Pg.551]

Many hydrazones and azines are colored and useful as dyestuffs. Examples are 2-hydroxynaphthazine, a yellow fluorescent dye (Lumogen LT Bright Yellow), and the pyridon—azino—quinone class of red-violet dyes. Numerous hydrazine derivatives are antioxidants and stabilizers by virtue of their reducing and chelating powers. [Pg.292]

Environmental Impact of Ambient Ozone. Ozone can be toxic to plants, animals, and fish. The lethal dose, LD q, for albino mice is 3.8 ppmv for a 4-h exposure (156) the 96-h LC q for striped bass, channel catfish, and rainbow trout is 80, 30, and 9.3 ppb, respectively. Small, natural, and anthropogenic atmospheric ozone concentrations can increase the weathering and aging of materials such as plastics, paint, textiles, and mbber. For example, mbber is degraded by reaction of ozone with carbon—carbon double bonds of the mbber polymer, requiring the addition of aromatic amines as ozone scavengers (see Antioxidants Antiozonants). An ozone decomposing polymer (noXon) has been developed that destroys ozone in air or water (157). [Pg.504]

The versatility of this reaction is extended to a variety of aldehydes. The bisphenol derived from 2,6-di-/ f2 -butylphenol and furfural, (25) where R = furfuryl (13), is also used as an antioxidant. The utility of the 3,5-di-/ f2 -butyl-4-hydroxyben2yl moiety is evident in stabili2ets of all types (14), and its effectiveness has spurred investigations of derivatives of hindered alkylphenols to achieve better stahi1i2ing quaUties. Another example is the Michael addition of 2,6-di-/ f2 -butyl phenol to methyl acrylate. This reaction is carried out under basic conditions and yields methyl... [Pg.61]

Antioxidants. The 1,2-dihydroquinolines have been used in a variety of ways as antioxidants (qv). For example, l,2-dihydro-2,2,4-trimethylquinoline along with its 6-decyl [81045-48-9] and 6-ethoxy [91-53-2] derivatives have been used as antio2onants (qv) and stabilizers (68). A polymer [26780-96-1] of l,2-dihydro-2,2,4-trimethylquinoline is used in resins, copolymers, lubricant oils, and synthetic fibers (69). These same compounds react with aldehydes and the products are useful as food antioxidants (70). A cross-linked polyethylene prepared with peroxides and other monomers in the presence of l,2-dihydro-6-ethoxyquinoline produces polymers with a chemically bonded antioxidant (71). [Pg.393]

The effects of release additives on bulk properties must also be carefully considered, particularly with integral additives to plastics. Eor example, partial solubiHty usually confers some plastici2ing effect. This may improve impact strength but could reduce the heat distortion temperature. Some release additives such as metallic soaps have secondary antioxidant and heat-stabiH2er benefits. Such effects are exploited in multipurpose formulations. [Pg.99]

Solubility. Another desirable property of a degradant is its high solubihty in mbber but poor solubihty in water and solvents that come in contact with mbber. Poor solubihty in the mbber means that only small quantities of antioxidants can be dissolved without producing a bloom. As an example, N,lSf-diphenyl- phenylenediamine (DPPD) has limited use because of its poor solubihty in mbber. On the other hand, phenohc and phosphite antioxidants have high solubihty and bloom is not a problem. [Pg.246]

Many antioxidants ia these classes are volatile to some extent at elevated temperatures and almost all antioxidants are readily extracted from their vulcanizates by the proper solvent. These disadvantages have become more pronounced as performance requirements for mbber products have been iacreased. Higher operating temperatures and the need for improved oxidation resistance under conditions of repeated extraction have accelerated the search for new techniques for polymer stabilization. Carpet backiag, seals, gaskets, and hose are some examples where high temperatures and/or solvent extraction can combine to deplete a mbber product of its antioxidant and thus lead to its oxidative deterioration faster (38,40). [Pg.247]

Types of Latex Compounds. For comparison with dry-mbber compounds, some examples of various latex compounds and the physical properties of their vulcanizates are given in Table 23. Recipes of natural mbber latex compounds, including one without antioxidant, and data on tensile strength and elongation of sheets made from those, both before and after accelerated aging, are also Hsted. The effects of curing ingredients, accelerator, and antioxidant are also Hsted. Table 24 also includes similar data for an SBR latex compound. A phenoHc antioxidant was used in all cases. [Pg.256]

Biochemical Functions. Ascorbic acid has various biochemical functions, involving, for example, coUagen synthesis, immune function, dmg metabohsm, folate metaboHsm, cholesterol cataboHsm, iron metaboHsm, and carnitine biosynthesis. Clear-cut evidence for its biochemical role is available only with respect to coUagen biosynthesis (hydroxylation of prolin and lysine). In addition, ascorbic acid can act as a reducing agent and as an effective antioxidant. Ascorbic acid also interferes with nitrosamine formation by reacting direcdy with nitrites, and consequently may potentially reduce cancer risk. [Pg.21]

A sequence of tests has been devised to evaluate antioxidants for use in automotive crankcase lubricants. The Indiana Stirring Oxidation Test (ISOT) JISK2514 is an example of a laboratory screening test. The oil is stirred at 165.5°C in the presence of air. Copper and iron strips are used as metal catalysts. The development of sludge, viscosity, and acidity are deterrnined periodically. Failure time is determined when the development of acidity requires... [Pg.234]

Ethyleneamines are used in certain petroleum refining operations as well. Eor example, an EDA solution of sodium 2-aminoethoxide is used to extract thiols from straight-mn petroleum distillates (314) a combination of substituted phenol and AEP are used as an antioxidant to control fouling during processing of a hydrocarbon (315) AEP is used to separate alkenes from thermally cracked petroleum products (316) and TEPA is used to separate carbon disulfide from a pyrolysis fraction from ethylene production (317). EDA and DETA are used in the preparation and reprocessing of certain... [Pg.48]

Because nitrile rubber is an unsaturated copolymer it is sensitive to oxidative attack and addition of an antioxidant is necessary. The most common practice is to add an emulsion or dispersion of antioxidant or stabilizer to the latex before coagulation. This is sometimes done batchwise to the latex in the blend tank, and sometimes is added continuously to the latex as it is pumped toward further processing. PhenoHc, amine, and organic phosphite materials are used. Examples are di-Z fZ-butylcatechol, octylated diphenylamine, and tris(nonylphenyl) phosphite [26523-78-4]. All are meant to protect the product from oxidation during drying at elevated temperature and during storage until final use. Most mbber processors add additional antioxidant to their compounds when the NBR is mixed with fillers and curatives in order to extend the life of the final mbber part. [Pg.521]

In some cases an additive may be encountered in a variety of polymers for a wide range of end uses, for example certain antioxidants. In other instances the additive may be very specific to a certain polymer for a particular end use. [Pg.124]


See other pages where Antioxidants examples is mentioned: [Pg.60]    [Pg.486]    [Pg.164]    [Pg.116]    [Pg.507]    [Pg.60]    [Pg.486]    [Pg.164]    [Pg.116]    [Pg.507]    [Pg.304]    [Pg.354]    [Pg.135]    [Pg.44]    [Pg.105]    [Pg.224]    [Pg.229]    [Pg.439]    [Pg.22]    [Pg.246]    [Pg.246]    [Pg.269]    [Pg.269]    [Pg.270]    [Pg.378]    [Pg.103]    [Pg.1969]    [Pg.113]    [Pg.92]    [Pg.127]   
See also in sourсe #XX -- [ Pg.230 ]




SEARCH



Antioxidants chromatogram, examples

Examples of interaction between antioxidant and silica in polypropylene films

© 2024 chempedia.info