Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Animals species

Chromosomes are extremely complex chemicals that are assembled from simple repeating units and contain all the chemical information needed to reproduce animate species. Each living organism has its own complete set of chromosomes, called the genome. [Pg.421]

Genes are segments of chromosomes. Some of the genes are coded to give each animate species its characteristics (e.g., color and number of eyes, type of hair, muscle), and others are coded to produce the chemicals required for the organism to live (metabolism). [Pg.421]

The information needed to reproduce and support an animate species is given by the order in which the nitrogen bases occur along the DNA or RNA chains (-C-T-T-A-G-, for example). A sequence of three such bases (a codon) provides the fundamental unit of information. [Pg.422]

Plants, in contrast to animals, have the ability to convert carbon dioxide from the atmosphere and inorganic components of the earth direcdy into high energy carbohydrates (qv), fats, and proteins (qv). These plant materials are absolutely essential to human nutrition as well as to the nutrition of other animal species. Thus consumption of plant matter, either directly or through a food chain, is essential to animal life and humans are totally dependent on agricultural endeavors, ie, the culture and harvesting of plant matter. [Pg.212]

Eor this reason, finding the location of the genes that control production, as well as the alleles, ie, DNA sequences, for superior production, is a significant strategy for engineering improved animal species through biotechnology. [Pg.243]

Milk consists of 85—89% water and 11—15% total soflds (Table 1) the latter comprises soflds-not-fat (SNF) and fat. Milk having a higher fat content also has higher SNF, with an increase of 0.4% SNF for each 1% fat increase. The principal components of SNF are protein, lactose, and minerals (ash). The fat content and other constituents of the milk vary with the animal species, and the composition of milk varies with feed, stage of lactation, health of the animal, location of withdrawal from the udder, and seasonal and environmental conditions. The nonfat soflds, fat soflds, and moisture relationships are well estabhshed and can be used as a basis for detecting adulteration with water (qv). Physical properties of milk are given in Table 2. [Pg.350]

Chronic Toxicity. The effects of repeated oral exposure to phthalates for periods ranging from a few days to 2 years have been studied in a number of animal species including rats, mice, hamsters, guinea pigs, ferrets, and dogs (37). [Pg.130]

In the tissues of animals, most thiamine is found as its phosphorylated esteis (4—6) and is piedominandy bound to enzymes as the pyrophosphate (5), the active coen2yme form. As expected for a factor involved in carbohydrate metaboHsm, the highest concentrations ate generally found in organs with high activity, such as the heart, kidney, Hver, and brain. In humans this typically amounts to 1—8 p.g/g of wet tissue, with lesser amounts in the skeletal muscles (35). A typical healthy human body may contain about 30 mg of thiamine in all forms, about 40—50% of this being in the muscles owing to their bulk. Almost no excess is stored. Normal human blood contains about 90 ng/mL, mostly in the ted cells and leukocytes. A value below 40 ng/mL is considered indicative of a possible deficiency. Amounts and proportions in the tissues of other animal species vary widely (31,35). [Pg.88]

A number of antioxidants have been accepted by the FDA as indirect additives for polymers used in food appHcations. Acceptance is deterrnined by subchronic or chronic toxicity in more than one animal species and by the concentration expected in the diet, based on the amount of the additive extracted from the polymer by typical foods or solvents that simulate food in their extractive effects. Only materials of insignificant risk to the consumer are regulated by the FDA for use in plastics contacted by food stuffs. [Pg.234]

Arsenic compounds must be considered extremely poisonous. Dust or fumes irritate mucous membranes and lead to arsenical poisoning. When swallowed they irritate the stomach and affect the heart, Hver, and kidneys. Nervousness, thirst, vomiting, diarrhea, cyanosis, and coUapse are among the symptoms of arsenical poisoning (3). In spite of the toxicity of arsenic compounds, there is evidence that arsenic is an essential nutrient for several animal species (4). [Pg.332]

Animal and Human Toxicity. The acute toxicity of lindane depends on the age, sex, and animal species, and on the route of adrninistration. The oral LD q in mice, rats, and guinea pigs is 86, 125—230, and 100—127 mg/kg, respectively. In contrast, most of the other isomers were considerably more toxic (94,95). Some of the other toxic responses caused by lindane in laboratory animals include hepato- and nephotoxicity, reproductive and embryotoxicity, mutagenicity in some short-term in vitro bioassays, and carcinogenicity (80). The mechanism of the lindane-induced response is not known. Only minimal data are available on the mammalian toxicides of hexachlorocyclopentadiene. [Pg.68]

Fominoben [18053-31 -1] (66) is another nonnarcotic drug which has shown antitussive activity comparable to codeiae when adrninistered both orally or parenteraHy ia a variety of animal species (95). [Pg.527]

There is some evidence from a number of animal species that phytoestrogen consumption can interfere with reproductive development and function. ... [Pg.105]

The effects of drugs in animals are usually concentration dependent and are also often animal species and site-of-action dependent " " " thus the compounds may be present naturally in diets at low levels and produce no obvious adverse effects, either on the animal, gut microflora, meat, milk or eggs. The main purpose of the use of drugs in animal feeds is to improve the animal health and welfare and often to improve growth at minimum cost to the producer.In the case of naturally produced compounds that may occur in the feedstuff s of animals, these compounds may impair animal health and performance as well as cause im-... [Pg.90]

A wide variety of animal species are subjected to the administration of drugs during their lifetime.The various animal species can encounter drugs and other dietary additives by different routes and this is dependent on the environment in which they are kept. Intensively reared animals tend to have considerable consistency in the components of their diets and thus are much less likely to encounter the range of naturally produced compounds that extensively produced animals encounter. The desire for less expensive dietary constituents and increased efficiency of use has induced feed manufacturers and producers to add enzyme supplements to diets of most farmed animals to reduce the negative effects of indigestible dietary carbohydrates, refactory proteins and unavailable minerals such as phosphorus. This use of dietary additives to improve nutrient utilization and environmental consequences of feeding animals intensively has been the subject of intense research activity in the last five years. " The... [Pg.90]

Ingested plant metabolites, drugs and other compounds are processed both by the animal and by the microbial flora of the gut. The composition and activities of the gut microflora vary greatly from one animal species to another and have been very extensively reviewed." In true ruminants (sheep, cattle and deer) and in functional ruminants, such as camels and llamas, a mixed population of bacteria,... [Pg.95]

Cross-contamination between animal species may be a factor in the spread of resistance. Flint and Stewart " showed that a rumen strain (46/5) of the Gram... [Pg.105]

A2 - Suspected human carcinogens. Chemical substances, or substances associated with industrial process, which are suspect of inducing cancer, based on their limited epidemiological evidence or demonstration of carcinogenesis in one or more animal species by appropriate methods. [Pg.177]

Compounds Affecting Rq>roduction Compounds that can affect reproductive function include several drugs and occupationally important chemicals such as solvents and pesticides as well as a number of environmentally relevant com-fxrunds. A group of chemical compounds that has received much attention recently is endocrine disrupters, many of which are halogenated hydrocarbons, e.g., PCBs. These are known to induce feminization in fish and other animal species.1.5/ There is intense debate about the significance of these compounds to human health. Tobacco smoke and ethyl alcohol also have major effects on human reproduction, the effects of alcohol being especially important. Table 5.17 lists compounds that may disturb the functions of female and male reproductive functions. [Pg.304]

Name of study Animal species Duration of study Reason for study... [Pg.329]


See other pages where Animals species is mentioned: [Pg.330]    [Pg.66]    [Pg.218]    [Pg.240]    [Pg.241]    [Pg.242]    [Pg.411]    [Pg.413]    [Pg.47]    [Pg.267]    [Pg.107]    [Pg.130]    [Pg.300]    [Pg.404]    [Pg.405]    [Pg.17]    [Pg.84]    [Pg.65]    [Pg.117]    [Pg.286]    [Pg.112]    [Pg.86]    [Pg.88]    [Pg.95]    [Pg.106]    [Pg.106]    [Pg.14]    [Pg.30]    [Pg.372]    [Pg.741]    [Pg.292]   
See also in sourсe #XX -- [ Pg.113 , Pg.126 , Pg.127 , Pg.128 ]

See also in sourсe #XX -- [ Pg.57 ]




SEARCH



© 2019 chempedia.info