Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anesthetics sodium channels

A. Prototypes, Mechanisms, and Effects Beta-blockers are discussed in more detail in Chapter 10. Propranolol and esmolol are the prototype antiarrhythmic beta-blockers. Their mechanism in arrhythmias is primarily cardiac beta blockade and reduction in cAMP, which results in the reduction of both sodium and calcium currents and the suppression of abnormal pacemakers. The AV node is particularly sensitive to beta-blockers the PR interval is usually prolonged by class II drugs (Table 14-2). Under some conditions, these dmgs may have some direct local anesthetic (sodium channel-blocking) effect in the heart, but this is probably rare at the concentrations achieved clinically. [Pg.136]

The Class I antiarrhythmic agents inactivate the fast sodium channel, thereby slowing the movement of Na" across the cell membrane (1,2). This is reflected as a decrease in the rate of development of phase 0 (upstroke) depolarization of the action potential (1,2). The Class I agents have potent local anesthetic effects. These compounds have been further subdivided into Classes lA, IB, and IC based on recovery time from blockade of sodium channels (11). Class IB agents have the shortest recovery times (t1 ) Class lA compounds have moderate recovery times (t 2 usually <9 s) and Class IC have the longest recovery times (t 2 usually >9 s). [Pg.112]

Verapamil. Verapamil hydrochloride (see Table 1) is a synthetic papaverine [58-74-2] C2qH2 N04, derivative that was originally studied as a smooth muscle relaxant. It was later found to have properties of a new class of dmgs that inhibited transmembrane calcium movements. It is a (+),(—) racemic mixture. The (+)-isomer has local anesthetic properties and may exert effects on the fast sodium channel and slow phase 0 depolarization of the action potential. The (—)-isomer affects the slow calcium channel. Verapamil is an effective antiarrhythmic agent for supraventricular AV nodal reentrant arrhythmias (V1-2) and for controlling the ventricular response to atrial fibrillation (1,2,71—73). [Pg.121]

Pharmacological intervention NSAIDs, local anesthetics, opioid analgesics, sodium-channel blockers Opioid analgesics, NSAIDs, calcium-channel blockers ... [Pg.929]

TTX) and saxitoxin, which block the channel pore from the outer side. The difference in TTX sensitivity among the sodium channels is caused by a single amino acid difference in the P region of repeat I (phenylalanine or tyrosine in TTX-sensitive channels cysteine or serine in TTX-resistant channels). The S6 segments contribute to forming the inner pore of the channel and binding sites for local anesthetics. [Pg.1306]

Starmer C.F. Grant A.O. and Strauss, H.C. Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J 46 5-21, 1984. [Pg.340]

The ion-channel blocking mechanism has been widely tested and found to be important in both pharmacology and physiology. Examples are the block of nerve and cardiac sodium channels by local anesthetics, or block of NMDA receptor channels by Mg2+ and the anesthetic ketamine. The channel-block mechanism was first used quantitatively to describe block of the squid axon K+ current by tetraethylammonium (TEA) ions. The effects of channel blockers on synaptic potentials and synaptic currents were investigated, particularly at the neuromuscular junction, and the development of the single-channel recording technique allowed channel blockages to be observed directly for the first time. [Pg.197]

The mechanism of action of these anesthetics involves the blockade of sodium channels in the membrane of the second-order sensory neuron. The binding site for these anesthetics is on a subunit of the sodium channel located near the internal surface of the cell membrane. Therefore, the agent must enter the neuron in order to block the sodium channel effectively. Without the influx of sodium, neurons cannot depolarize and generate an action potential, so the second-order sensory neuron cannot be stimulated by impulses elicited by pain receptors associated with the first-order sensory neuron. In other words, the pain signal is effectively interrupted at the level of the spinal cord and does not travel any higher in the CNS. In this way, the brain does not perceive pain. [Pg.70]

Bupivacaine influx, leading to neuronal membrane hyperpolarization Anesthetic, binds to sodium channel, decreases sodium... [Pg.41]

Cocaine (8), from Erythroxylum coca Lam., besides causing euphoria by inhibiting the dopamine transport protein (DAT) responsible for its recreational and illegal use, exerts a local anesthetic activity through blocking sodium channels and is still used as a probe for this target. [Pg.30]

A mechanism of local anesthetic action in which they serve as sodium channel blockers has been proposed. According to this mechanism, the molecular targets of local anesthetic action are the voltage-requiring sodium channels, which are present in all the neurons. The process of local anesthesia by respective drugs can be schematically represented in the following manner. [Pg.10]

It is suspected that these drugs selectively bind with the intracellular surface of sodium channels and block the entrance of sodinm ions into the cell. This leads to stoppage of the depolarization process, which is necessary for the diffusion of action potentials, elevation of the threshold of electric nerve stimulation, and thus the elimination of pain. Since the binding process of anesthetics to ion channels is reversible, the drug diffuses into the vascular system where it is metabolized, and nerve cell function is completely restored. [Pg.11]

Lidocaine is the most widely used local anesthetic. Its excellent therapeutic activity is fast-acting and lasts sufficiently long to make it suitable for practically any clinical use. It stabilizes cell membranes, blocks sodium channels, facilitates the secretion of potassium ions out of the cell, and speeds up the repolarization process in the cell membrane. It is used for terminal infiltration, block, epidural, and spinal anesthesia during operational interventions in dentistry, otolaryngology, obstetrics, and gynecology. It is also used for premature ventricular extrasystole and tachycardia, especially in the acute phase of cardiac infarction. Synonyms for this drug are xylocaine, neflurane, and many others. [Pg.15]

Lidocaine (Xylocaine) was introduced as a local anesthetic and is still used extensively for that purpose (see Chapter 27). Lidocaine is an effective sodium channel blocker, binding to channels in the inactivated state. Lidocaine, like other IB agents, acts preferentially in diseased (ischemic) tissue, causing conduction block and interrupting reentrant tachycardias. [Pg.176]

Flecainide (Tambocor) is a fluorinated aromatic hydrocarbon examined initially for its local anesthetic action and subsequently found to have antiarrhythmic effects. Flecainide inhibits the sodium channel, leading to conduction slowing in all parts of the heart, but most notably in the His-Purkinje system and ventricular myocardium. It has relatively minor effects on repolarization. Flecainide also inhibits abnormal auto-maticity. [Pg.180]

Answer Bupivacaine use for local anesthesia of this type is very safe and commonly done. However, SOMETIMES inadvertent vascular injection results in a large amount of anesthetic in the systemic circulation. Because the heart is beating, the excitable tissue in the heart is being depolarized repetitively. Local anesthetics bind to rapidly depolarizing tissues more than tissues at rest (frequency-dependent block). Also, bupivacaine has a long duration of action because of its long residence time at receptors (sodium channel). Thus, this combination of factors contributed to the catastrophic outcome of this case. Had the same case involved lidocaine, the resuscitation would have likely been successful. [Pg.337]

Targeting the Sodium Channel Protein Local Anesthetics... [Pg.415]

Class I— membrane stabilizing drugs to reduce cardiac electrical excitability molecules that are sodium channel blockers, usually based on local anesthetic molecular structure... [Pg.420]

Action potential propagation Local anesthetics, tetrodotoxin,1 saxitoxin2 Nerve axons Block sodium channels block conduction... [Pg.124]

Local anesthetic action, also known as "membrane-stabilizing" action, is a prominent effect of several 3 blockers (Table 10-2). This action is the result of typical local anesthetic blockade of sodium channels (see Chapter 26) and can be demonstrated experimentally in isolated neurons, heart muscle, and skeletal muscle membrane. However, it is unlikely that this effect is important after systemic administration of these drugs, since the concentration in plasma usually achieved by these routes is too low for the anesthetic effects to be evident. These membrane-stabilizing 3 blockers are not used topically on the eye, where local anesthesia of the cornea would be highly undesirable. Sotalol is a nonselective 3-receptor antagonist that lacks local anesthetic action but has marked class III antiarrhythmic effects, reflecting potassium channel blockade (see Chapter 14). [Pg.210]

Drugs with local anesthetic action block sodium channels and reduce the sodium current, INa. They are the oldest group of antiarrhythmic drugs and are still widely used. [Pg.284]

Several first-generation Hi antagonists are potent local anesthetics. They block sodium channels in excitable membranes in the same fashion as procaine and lidocaine. Diphenhydramine and promethazine are actually more potent than procaine as local anesthetics. They are occasionally used to produce local anesthesia in patients allergic to conventional local anesthetic drugs. A small number of these agents also block potassium channels this action is discussed below (see Toxicity). [Pg.354]

The primary mechanism of action of local anesthetics is blockade of voltage-gated sodium channels (Figure 26-2). [Pg.563]

The excitable membrane of nerve axons, like the membrane of cardiac muscle (see Chapter 14) and neuronal cell bodies (see Chapter 21), maintains a resting transmembrane potential of -90 to -60 mV. During excitation, the sodium channels open, and a fast inward sodium current quickly depolarizes the membrane toward the sodium equilibrium potential (+40 mV). As a result of this depolarization process, the sodium channels close (inactivate) and potassium channels open. The outward flow of potassium repolarizes the membrane toward the potassium equilibrium potential (about -95 mV) repolarization returns the sodium channels to the rested state with a characteristic recovery time that determines the refractory period. The transmembrane ionic gradients are maintained by the sodium pump. These ionic fluxes are similar to, but simpler than, those in heart muscle, and local anesthetics have similar effects in both tissues. [Pg.563]

Between successive action potentials, a portion of the sodium channels will recover from the local anesthetic block (see Figure 14-9). The recovery from drug-induced block is 10 to 1000 times slower than the recovery of channels from normal... [Pg.565]

Several isoforms of the sodium channel have been identified, and they have differing sensitivities to channel-blocking drugs such as tetrodotoxin. There is also evidence that some sodium channels are much more sensitive to local anesthetics than the classic channels associated with axonal transmission. [Pg.566]

If seizures do occur, it is important to prevent hypoxemia and acidosis. Although administration of oxygen does not prevent seizure activity, hyperoxemia may be beneficial after onset of seizures. Hypercapnia and acidosis may lower the seizure threshold, and so hyperventilation is recommended during treatment of seizures. In addition, hyperventilation increases blood pH, which in turn lowers extracellular potassium. This action hyperpolarizes the transmembrane potential of axons, which favors the resting (or low-affinity) state of the sodium channels, resulting in decreased local anesthetic toxicity. [Pg.570]

The cardiovascular effects of local anesthetics result in part from direct effects of these drugs on the cardiac and smooth muscle membranes and from indirect effects on the autonomic nervous system. As described in Chapter 14, local anesthetics block cardiac sodium channels and thus depress abnormal cardiac pacemaker activity, excitability, and conduction. At extremely high concentrations, local anesthetics can also block calcium channels. With the notable exception of cocaine, local anesthetics also depress myocardial contractility and produce direct arteriolar dilation, leading to systemic hypotension. Cardiovascular collapse is rare, but has been reported after large doses of bupivacaine and ropivacaine have been inadvertently administered into the intravascular space. [Pg.570]

It has been suggested that bupivacaine may be more cardiotoxic than other long-acting local anesthetics (eg, ropivacaine). This reflects the fact that bupivacaine-induced blockade of sodium channels is potentiated by the long action potential duration of cardiac cells compared with nerve fibers. The most common electrocardiographic finding in patients with bupivacaine intoxication is a slow idioventricular rhythm with broad QRS complexes and eventually electromechanical dissociation. [Pg.571]

In small doses, local anesthetics can depress posttetanic potentiation via a prejunctional neural effect. In large doses, local anesthetics can block neuromuscular transmission. With higher doses, local anesthetics block acetylcholine-induced muscle contractions as a result of blockade of the nicotinic receptor ion channels. Experimentally, similar effects can be demonstrated with sodium channel-blocking antiarrhythmic drugs such as quinidine. However, at the doses used for cardiac arrhythmias, this interaction is of little or no clinical significance. Higher concentrations of bupivacaine (0.75%) have been associated with cardiac arrhythmias independent of the muscle relaxant used. [Pg.589]


See other pages where Anesthetics sodium channels is mentioned: [Pg.1308]    [Pg.140]    [Pg.70]    [Pg.930]    [Pg.206]    [Pg.224]    [Pg.152]    [Pg.377]    [Pg.415]    [Pg.261]    [Pg.279]    [Pg.558]    [Pg.559]    [Pg.564]    [Pg.565]    [Pg.565]    [Pg.565]    [Pg.566]    [Pg.570]   
See also in sourсe #XX -- [ Pg.101 ]




SEARCH



Anesthetic

Sodium channels

Sodium channels local anesthetics affecting

© 2024 chempedia.info