Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical techniques, Chapter

Chapter 7 (by H. Ishida and A Ishitani) review microscopic and surface analytical techniques. Chapter 8 (by D. M. Haaland) reviews developments in statistical chemometrics for data analysis. [Pg.427]

Hsu, C. S., Genowitz, M. W., Dechert, G. J., Abbott, D. J. and Barbour, R. Molecular Characterization of Diesel Fuels by Modem Analytical Techniques. Chapter 2 in Chemistry of Diesel Fuels. C. Song, S. Hsu and I. Mochida, eds., New York Taylor Francis, 2000. [Pg.365]

Measurements are made using appropriate equipment or instruments. The array of equipment and instrumentation used in analytical chemistry is impressive, ranging from the simple and inexpensive, to the complex and costly. With two exceptions, we will postpone the discussion of equipment and instrumentation to those chapters where they are used. The instrumentation used to measure mass and much of the equipment used to measure volume are important to all analytical techniques and are therefore discussed in this section. [Pg.25]

A technique is any chemical or physical principle that can be used to study an analyte. Many techniques have been used to determine lead levels. For example, in graphite furnace atomic absorption spectroscopy lead is atomized, and the ability of the free atoms to absorb light is measured thus, both a chemical principle (atomization) and a physical principle (absorption of light) are used in this technique. Chapters 8-13 of this text cover techniques commonly used to analyze samples. [Pg.36]

The analytical techniques covered in this chapter are typically used to measure trace-level elemental or molecular contaminants or dopants on surfaces, in thin films or bulk materials, or at interfaces. Several are also capable of providing quantitative measurements of major and minor components, though other analytical techniques, such as XRF, RBS, and EPMA, are more commonly used because of their better accuracy and reproducibility. Eight of the analytical techniques covered in this chapter use mass spectrometry to detect the trace-level components, while the ninth uses optical emission. All the techniques are destructive, involving the removal of some material from the sample, but many different methods are employed to remove material and introduce it into the analyzer. [Pg.527]

During the past twenty or so years numerous sophisticated surface analytical techniques have been successfully employed to investigate and understand the nature of bonding surfaces and their interaction with the environment. Some of these, e.g., HR-SEM and XPS have been mentioned above, with details of these and many more techniques covered in Chapter 6. In this section emphasis will be placed on those somewhat less sophisticated techniques that are employed in or in close conjunction with bond shops. What they lack in sophistication they often make up for in the ability to quickly and cheaply evaluate whether problems such as surface contamination or out-of-spec surface treatment procedures are... [Pg.994]

The first component of the systems approach to error reduction is the optimization of human performance by designing the system to support human strengths and minimize the effects of human limitations. The hiunan factors engineering and ergonomics (HFE/E) approach described in Section 2.7 of Chapter 2 indicates some of the techniques available. Design data from the human factors literature for areas such as equipment, procedures, and the human-machine interface are available to support the designer in the optimization process. In addition the analytical techniques described in Chapter 4 (e.g., task analysis) can be used in the development of the design. [Pg.19]

The overall reaction stoichiometry having been established by conventional methods, the first task of chemical kinetics is essentially the qualitative one of establishing the kinetic scheme in other words, the overall reaction is to be decomposed into its elementary reactions. This is not a trivial problem, nor is there a general solution to it. Much of Chapter 3 deals with this issue. At this point it is sufficient to note that evidence of the presence of an intermediate is often critical to an efficient solution. Modem analytical techniques have greatly assisted in the detection of reactive intermediates. A nice example is provided by a study of the pyridine-catalyzed hydrolysis of acetic anhydride. Other kinetic evidence supported the existence of an intermediate, presumably the acetylpyridinium ion, in this reaction, but it had not been detected directly. Fersht and Jencks observed (on a time scale of tenths of a second) the rise and then fall in absorbance of a solution of acetic anhydride upon treatment with pyridine. This requires that the overall reaction be composed of at least two steps, and the accepted kinetic scheme is as follows. [Pg.7]

Gas chromatography/mass spectrometry (GC/MS) is the synergistic combination of two powerful analytic techniques. The gas chromatograph separates the components of a mixture in time, and the mass spectrometer provides information that aids in the structural identification of each component. The gas chromatograph, the mass spectrometer, and the interface linking these two instruments are described in this chapter. [Pg.199]

Some preliminary laboratory work is in order, if the information is not otherwise known. First, we ask what the time scale of the reaction is surely our approach will be different if the reaction reaches completion in 10 ms, 10 s, 10 min, or 10 h. Then, one must consider what quantitative analytical techniques can be used to monitor it progress. Sometimes individual samples, either withdrawn aliquots or individual ampoules, are taken. More often a nondestructive analysis is performed, the progress of the reaction being monitored continuously or intermittently by a technique such as ultraviolet-visible spectrophotometry or nuclear magnetic resonance. The fact that both reactants and products might contribute to the instrument reading will not prove to be a problem, as explained in the next chapter. [Pg.10]

As AOS is a mixture of different chemical species, determination of its composition by modern analytical techniques is perhaps even more important than for most other surfactants this chapter therefore also describes the state of the art of the analysis of AOS. The chapter also contains a brief review of the biodegradability and the toxicity of AOS. [Pg.365]

A primary goal of this chapter is to learn how to achieve control over the pH of solutions of acids, bases, and their salts. The control of pH is crucial for the ability of organisms—including ourselves—to survive, because even minor drifts from the optimum value of the pH can cause enzymes to change their shape and cease to function. The information in this chapter is used in industry to control the pH of reaction mixtures and to purify water. In agriculture it is used to maintain the soil at an optimal pH. In the laboratory it is used to interpret the change in pH of a solution during a titration, one of the most common quantitative analytical technique. It also helps us appreciate the basis of qualitative analysis, the identification of the substances and ions present in a sample. [Pg.565]

The amounts of the standard isotopic species and the tracer isotopic species are represented by X and X for the sample and the reference material. The reference substance is chosen arbitrarily, but is a substance that is homogeneous, available in reasonably large amounts, and measurable using standard analytical techniques for measuring isotopes (generally mass spectrometry). For instance, a sample of ocean water known as Standard Mean Ocean Water (SMOW) is used as a reference for and 0. Calcium carbonate from the Peedee sedimentary formation in North Carolina, USA (PDB) is used for C. More information about using carbon isotopes is presented in Chapter 11. [Pg.91]

It is particularly important to study process phenomena under dynamic (rather than static) conditions. Most current analytical techniques are designed to determine the initial and final states of a material or process. Instmments must be designed for the analysis of materials processing in real time, so that the cmcial chemical reactions in materials synthesis and processing can be monitored as they occur. Recent advances in nuclear magnetic resonance and laser probes indicate valuable lines of development for new techniques and comparable instmmentation for the study of interfaces, complex hquids, microstmctures, and hierarchical assemblies of materials. Instmmentation needs for the study of microstmctured materials are discussed in Chapter 9. [Pg.88]

Abstract Protoberberine alkaloids and related compounds represent an important class of molecules and have attracted recent attention for their various pharmacological activities. This chapter deals with the physicochemical properties of several isoquinoline alkaloids (berberine, palmatine and coralyne) and many of their derivatives under various environmental conditions. The interaction of these compounds with polymorphic DNA structures (B-form, Z-form, H -form, protonated form, triple helical form and quadruplex form) and polymorphic RNA structures (A-form, protonated form, triple helical form and quadruplex form) reported by several research groups, employing various analytical techniques such as spectrophotometry, spectrofluorimetry, circular dichro-ism, NMR spectroscopy, viscometry as well as molecular modelling and thermodynamic analysis to elucidate their mode and mechanism of action for structure-activity relationships, are also presented. [Pg.156]

Analytical techniques for the quantitative determination of additives in polymers generally fall into two classes indirect (or destructive) and direct (or nondestructive). Destructive methods require an irreversible alteration to the sample so that the additive can be removed from the plastic material for subsequent detention. This chapter separates the additive wheat from the polymer chaff , and deals with sample preparation techniques for indirect analysis. [Pg.52]

In an acetone extract from a neoprene/SBR hose compound, Lattimer et al. [92] distinguished dioctylph-thalate (m/z 390), di(r-octyl)diphenylamine (m/z 393), 1,3,5-tris(3,5-di-f-butyl-4-hydroxybenzyl)-isocyanurate m/z 783), hydrocarbon oil and a paraffin wax (numerous molecular ions in the m/z range of 200-500) by means of FD-MS. Since cross-linked rubbers are insoluble, more complex extraction procedures must be carried out (Chapter 2). The method of Dinsmore and Smith [257], or a modification thereof, is normally used. Mass spectrometry (and other analytical techniques) is then used to characterise the various rubber fractions. The mass-spectral identification of numerous antioxidants (hindered phenols and aromatic amines, e.g. phenyl-/ -naphthyl-amine, 6-dodecyl-2,2,4-trimethyl-l,2-dihydroquinoline, butylated bisphenol-A, HPPD, poly-TMDQ, di-(t-octyl)diphenylamine) in rubber extracts by means of direct probe EI-MS with programmed heating, has been reported [252]. The main problem reported consisted of the numerous ions arising from hydrocarbon oil in the recipe. In older work, mass spectrometry has been used to qualitatively identify volatile AOs in sheet samples of SBR and rubber-type vulcanisates after extraction of the polymer with acetone [51,246]. [Pg.411]

The ability of XB to control recognition, self-organization, and self-assembly processes in the different phases of matter is clearly emerging in the literature. This chapter focusses on self-assembly in the solid phase, while the chapters of B. Duncan and A. Legon (in this volume) deal with the liquid crystalline phase and gas phase, respectively. Relatively few papers are reported in the literature on self-assembly processes in solution [66-68,207,208]. Several analytical techniques have been used to detect XB formation, to define its nature, to establish its energetic and geometric characteristics, and to reveal... [Pg.139]

Before undertaking a discussion of the mathematics involved in the determination of reaction rates is undertaken, it is necessary to point out the importance of proper data acquisition in stability testing. Applications of rate equations and predictions are meaningful only if the data utilized in such processes are collected using valid statistical and analytical procedures. It is beyond the scope of this chapter to discuss the proper statistical treatments and analytical techniques that should be used in a stability study. Some perspectives in these areas can be obtained by reading the comprehensive review by Meites [84], the paper by P. Wessels et al. [85], and the section on statistical considerations in the stability guidelines published by FDA in 1987 [86] and in the more recent Guidance for Industry published in June 1998 [87],... [Pg.154]

In this chapter, the main analytical techniques and the methods currently employed in industrial and research laboratories for the analysis of important classes of additives are reviewed. The use of both gas chromatographic and liquid chromatographic methods coupled with mass spectrometry features prominently. Such methodology enables the sensitive and specific detection of many types of organic additives in polymeric materials to parts per billion (jig/kg) levels. Much of the development of these methods has been undertaken as part of research into the migration or extraction of species from food-contact and medical materials [5-7], This chapter also includes some discussion on the analysis of residual monomers and solvents. [Pg.562]


See other pages where Analytical techniques, Chapter is mentioned: [Pg.51]    [Pg.51]    [Pg.17]    [Pg.11]    [Pg.388]    [Pg.543]    [Pg.813]    [Pg.253]    [Pg.261]    [Pg.60]    [Pg.89]    [Pg.389]    [Pg.117]    [Pg.145]    [Pg.303]    [Pg.1030]    [Pg.140]    [Pg.246]    [Pg.297]    [Pg.586]    [Pg.30]    [Pg.207]    [Pg.244]    [Pg.93]    [Pg.18]    [Pg.123]    [Pg.24]    [Pg.744]    [Pg.76]    [Pg.10]    [Pg.154]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Analytic 5, Chapter

Analytical techniques

© 2024 chempedia.info