Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser probe

This paper deals with the control of weld depth penetration for cylinders in gold-nickel alloy and tantalum. After introducing the experimental set-up and the samples description, the study and the optimization of the testing are presented for single-sided measurements either in a pulse-echo configuration or when the pump and the probe laser beams are shifted (influence of a thermal phenomenon), and for different kind of laser impact (a line or a circular spot). First, the ultrasonic system is used to detect and to size a flat bottom hole in an aluminium plate. Indeed, when the width of the hole is reduced, its shape is nearly similar to the one of a slot. Then, the optimization is accomplished for... [Pg.693]

A RIKES experunent is essentially identical to that of CW CARS, except the probe laser need not be tunable. The probe beam is linearly polarized at 0° (—>), while the polarization of the tunable pump beam is controlled by a linear polarizer and a quarter waveplate. The pump and probe beams, whose frequency difference must match the Raman frequency, are overlapped in the sample (just as in CARS). The strong pump beam propagating tlirough a nonlinear medium induces an anisotropic change in the refractive mdices seen by tlie weaker probe wave, which alters the polarization of a probe beam [96]. The signal field is polarized orthogonally to the probe laser and any altered polarization may be detected as an increase in intensity transmitted tlirough a crossed polarizer. When the pump beam is Imearly polarized at 45° y), contributions... [Pg.1207]

A connnon teclmique used to enliance the signal-to-noise ratio for weak modes is to inject a local oscillator field polarized parallel to the RIKE field at the detector. This local oscillator field is derived from the probe laser and will add coherently to the RIKE field [96]. The relative phase of the local oscillator and the RIKE field is an important parameter in describing the optical heterodyne detected (OHD)-RIKES spectrum. If the local oscillator at the detector is in phase with the probe wave, the heterodyne mtensity is proportional to... [Pg.1208]

The dynamics of fast processes such as electron and energy transfers and vibrational and electronic deexcitations can be probed by using short-pulsed lasers. The experimental developments that have made possible the direct probing of molecular dissociation steps and other ultrafast processes in real time (in the femtosecond time range) have, in a few cases, been extended to the study of surface phenomena. For instance, two-photon photoemission has been used to study the dynamics of electrons at interfaces [ ]. Vibrational relaxation times have also been measured for a number of modes such as the 0-Fl stretching m silica and the C-0 stretching in carbon monoxide adsorbed on transition metals [ ]. Pump-probe laser experiments such as these are difficult, but the field is still in its infancy, and much is expected in this direction m the near fiitiire. [Pg.1790]

At low laser powers, the fluorescence signal is Imearly proportional to the power. Flowever, the power available from most tunable laser systems is suflFicient to cause partial saturation of the transition, with the result that the fluorescence intensity is no longer linearly proportional to the probe laser power. While more... [Pg.2077]

As an example, we mention the detection of iodine atoms in their P3/2 ground state with a 3 + 2 multiphoton ionization process at a laser wavelength of 474.3 run. Excited iodine atoms ( Pi/2) can also be detected selectively as the resonance condition is reached at a different laser wavelength of 477.7 run. As an example, figure B2.5.17 hows REMPI iodine atom detection after IR laser photolysis of CF I. This pump-probe experiment involves two, delayed, laser pulses, with a 200 ns IR photolysis pulse and a 10 ns probe pulse, which detects iodine atoms at different times during and after the photolysis pulse. This experiment illustrates a frindamental problem of product detection by multiphoton ionization with its high intensity, the short-wavelength probe laser radiation alone can photolyse the... [Pg.2135]

A qualitatively different approach to probing multiple pathways is to interrogate the reaction intermediates directly, while they are following different pathways on the PES, using femtosecond time-resolved pump-probe spectroscopy [19]. In this case, the pump laser initiates the reaction, while the probe laser measures absorption, excites fluorescence, induces ionization, or creates some other observable that selectively probes each reaction pathway. For example, the ion states produced upon photoionization of a neutral species depend on the Franck-Condon overlap between the nuclear configuration of the neutral and the various ion states available. Photoelectron spectroscopy is a sensitive probe of the structural differences between neutrals and cations. If the structure and energetics of the ion states are well determined and sufficiently diverse in... [Pg.223]

Figure 7. Action spectra recorded by fixing the probe laser on the rotational band head of the E—B, 1-11 transition and scanning the excitation laser through (a) the Br2 B—A, 12-0,... Figure 7. Action spectra recorded by fixing the probe laser on the rotational band head of the E—B, 1-11 transition and scanning the excitation laser through (a) the Br2 B—A, 12-0,...
Figure 9. Action spectra acquired in the F Cl B—X, 3-0 spectral region and with the probe laser tuned to the F Cl E—B, 9-1 transition. Both spectra were recorded using the same source conditions, but with the lasers intersecting the expansion at Z = 8.8, (a), and Z = 19.1, (b). Monomer rotational temperatures of 2.34(3) K and 1.09(10) K were measured at the two distances [62]. Figure 9. Action spectra acquired in the F Cl B—X, 3-0 spectral region and with the probe laser tuned to the F Cl E—B, 9-1 transition. Both spectra were recorded using the same source conditions, but with the lasers intersecting the expansion at Z = 8.8, (a), and Z = 19.1, (b). Monomer rotational temperatures of 2.34(3) K and 1.09(10) K were measured at the two distances [62].
Figure 13. Action spectrum of the linear He I Cl complex near the He + I Cl(By = 2) dissociation limit obtained by scanning the excitation laser through the ICl B—X, 2-0 region and monitoring the l Cl E—>X fluorescence induced by the temporally delayed probe laser, which was fixed on the l Cl E—B, 11-2 band head, (a). The transition energy is plotted relative to the I Cl B—X, 2-0 band origin, 17,664.08 cm . Panels (b), (c), and (d) are the rotational product state spectra obtained when fixing the excitation laser on the lines denoted with the corresponding panel letter. The probe laser was scanned through the ICl B—X, 11-2 region. Modified with permission from Ref. [51]. Figure 13. Action spectrum of the linear He I Cl complex near the He + I Cl(By = 2) dissociation limit obtained by scanning the excitation laser through the ICl B—X, 2-0 region and monitoring the l Cl E—>X fluorescence induced by the temporally delayed probe laser, which was fixed on the l Cl E—B, 11-2 band head, (a). The transition energy is plotted relative to the I Cl B—X, 2-0 band origin, 17,664.08 cm . Panels (b), (c), and (d) are the rotational product state spectra obtained when fixing the excitation laser on the lines denoted with the corresponding panel letter. The probe laser was scanned through the ICl B—X, 11-2 region. Modified with permission from Ref. [51].
The spatially periodic temperature distribution produces the corresponding relxactive index distribution, which acts as an optical phase grating for the low-power probing laser beam of the nonabsorbed wavelength in the sample. The thermal diffusivity is determined by detecting the temporal decay of the first-order diffracted probing beam [°o exp(-2t/x)] expressed by... [Pg.189]

Since there are a large number of different experimental laser and detection systems that can be used for time-resolved resonance Raman experiments, we shall only focus our attention here on two common types of methods that are typically used to investigate chemical reactions. We shall first describe typical nanosecond TR spectroscopy instrumentation that can obtain spectra of intermediates from several nanoseconds to millisecond time scales by employing electronic control of the pnmp and probe laser systems to vary the time-delay between the pnmp and probe pnlses. We then describe typical ultrafast TR spectroscopy instrumentation that can be used to examine intermediates from the picosecond to several nanosecond time scales by controlling the optical path length difference between the pump and probe laser pulses. In some reaction systems, it is useful to utilize both types of laser systems to study the chemical reaction and intermediates of interest from the picosecond to the microsecond or millisecond time-scales. [Pg.129]

The characterization of the laser pulse widths can be done with commercial autocorrelators or by a variety of other methods that can be found in the ultrafast laser literature. " For example, we have found it convenient to find time zero delay between the pump and probe laser beams in picosecond TR experiments by using fluorescence depletion of trans-stilbene. In this method, the time zero was ascertained by varying the optical delay between the pump and probe beams to a position where the depletion of the stilbene fluorescence was halfway to the maximum fluorescence depletion by the probe laser. The accuracy of the time zero measurement was estimated to be +0.5ps for 1.5ps laser pulses. A typical cross correlation time between the pump and probe pulses can also be measured by the fluorescence depletion method. [Pg.134]

A computer-controlled motorized translation stage mounted with a retro-reflector is used to vary the pump laser beam path relative to the probe laser beam path and this controls the relative timing between the pump and probe laser beams. Note that a one-foot difference in path length is about 1 ns time delay difference. The picosecond TR experiments are done essentially the same way as the nanosecond TR experiments except that the time-delay between the pump and probe beams are controlled by varying their relative path lengths by the computer-controlled motorized translation stage. Thus, one can refer to the last part of the description of the nanosecond TR experiments in the preceding section and use the pump and probe picosecond laser beams in place of the nanosecond laser beams to describe the picosecond TR experiments. [Pg.134]

To implement the Doppler-selected TOF measurement, the initial relative velocity is arranged to be parallel to the propagation vector of the probe laser. This critical configuration can readily be achieved in this rotating sources machine.36 Under this configuration, each Doppler-sliced 2D distribution exhibits a cylindrical symmetry The slit in front of the TOF spectrometer allows only those products with a rather small vx to be detected. Hence, only the -distribution, obtained by the TOF measurement, is needed to completely characterize the Doppler-sliced 2D (vx — vy) distribution. [Pg.6]

For ion TOF measurement a probe laser was used to ionize reaction products in the reaction zone. The (1 + F) resonance-enhanced multiphoton ionization (REMPI) method was adapted for H-atom detection. The necessary vacuum ultraviolet (VUV) radiation near 121.6 nm (for Lyman-a transition) can readily be generated by a frequency-tripling technique in a Kr cell.37 The sensitivity of this (1 +1 ) REMPI detection scheme is extremely high owing to the large absorption cross-section of Lyman-a transition,... [Pg.6]

Since the TOF spectrometer is perpendicular to the propagation axis of the probe laser, ions with a large vz could miss the MCP detector. To overcome this problem, two slots of 6 mm x 50 mm were cut on the two lateral sides of the free-drift tube and covered with a 90% T-mesh. An... [Pg.8]

To analyze the data, first perform the vx- and ty-corrections and the time-to-speed transformation to make the velocity volume element the same for all data points, and then normalize each Doppler-selected TOF spectrum according to the averaged ID Doppler profile from several independent scans, I vz) = )T)(, vyS(vy vx 0,vz)dvy. Due to the large exothermicity of this reaction, the problematic density-to-flux transformation is not negligible (despite the large probe laser size used to minimize its effects) and needs to be accounted for (the wy-correction , see Sec. 3.3). By combining all the resulting TOF spectra, the product 3D velocity flux contour... [Pg.11]


See other pages where Laser probe is mentioned: [Pg.874]    [Pg.1297]    [Pg.1985]    [Pg.2082]    [Pg.2083]    [Pg.2116]    [Pg.2128]    [Pg.2963]    [Pg.3039]    [Pg.375]    [Pg.390]    [Pg.321]    [Pg.13]    [Pg.381]    [Pg.382]    [Pg.390]    [Pg.390]    [Pg.392]    [Pg.392]    [Pg.413]    [Pg.189]    [Pg.223]    [Pg.130]    [Pg.131]    [Pg.131]    [Pg.2]    [Pg.4]    [Pg.5]    [Pg.5]    [Pg.12]    [Pg.13]   
See also in sourсe #XX -- [ Pg.375 , Pg.390 ]

See also in sourсe #XX -- [ Pg.375 , Pg.390 ]

See also in sourсe #XX -- [ Pg.402 ]




SEARCH



Additive determination, laser probe

CO laser-probing technique

Contaminants, laser probe

Contaminants, laser probe determination

Femtosecond pump-probe laser

Femtosecond pump-probe laser excitation

Hydrocarbon probes, laser

LASER PROBES FOR COMBUSTION CHEMISTRY

Laser Doppler flow probe, measurement

Laser Flash Photolysis and Pump-Probe Spectroscopy

Laser combustion probes

Laser photolysis triplet-state probes

Laser probe mass spectrometry

Laser probe schematic

Laser probing of chemical reaction products

Laser probing spatially precise

Laser spectroscopic probe methods

Laser-induced fluorescence fluorescent molecular probes

Laser-probe beam, schematic depiction

Laser-probing technique

Nanosecond laser flash photolysis probe technique

Probe continuum, picosecond lasers

Probe technique, nanosecond laser flash

Pulsed laser atom probe

Pulsed-laser time-of-flight atom-probe

Pump-probe laser spectroscopy

Pump-probe laser technique

Ultrafast pulse-probe laser

Ultrafast pulse-probe laser spectroscopy

© 2024 chempedia.info