Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analysis Flow Sheet

An extraction plant should operate at steady state in accordance with the flow-sheet design for the process. However, fluctuation in feed streams can cause changes in product quaUty unless a sophisticated system of feed-forward control is used (103). Upsets of operation caused by flooding in the column always force shutdowns. Therefore, interface control could be of utmost importance. The plant design should be based on (/) process control (qv) decisions made by trained technical personnel, (2) off-line analysis or limited on-line automatic analysis, and (J) control panels equipped with manual and automatic control for motor speed, flow, interface level, pressure, temperature, etc. [Pg.72]

The first step is to have a complete and detailed description of the system, process, or procedure under consideration. This must include physical properties of the materials, operating temperatures and pressures, detailed flow sheets, instmment diagrams of the process, materials of constmction, other detailed design specifications, and so forth. The more detailed and up-to-date this information is, the better the result of the analysis. [Pg.469]

The creation and analysis of process flow sheets has become much easier because of the availabihty of automated systems to draw and revise them. The goal of the use of the flow sheet as the input for process simulation and for process control is likely to be achieved reasonably soon. The use of interactive graphic displays for process monitoring and control is pervasive today. [Pg.68]

Most flow sheets have one or mote recycles, and trial-and-ettot becomes necessary for the calculation of material and energy balances. The calculations in a block sequential simulator ate repeated in this trial-and-ettot process. In the language of numerical analysis, this is known as convergence of the calculations. There ate mathematical techniques for speeding up this trial-and-ettot process, and special hypothetical calculation units called convergence, or recycle, units ate used in calculation flow diagrams that invoke special calculation routines. [Pg.73]

Even when a total system analysis is unnecessai y, the methodology of mathematical modeling is useful, because by considering each component of a system as a block of a flow sheet, the interrelationships become much clearer. Additional alternatives often become apparent, as does the need for more equipment-performance data. [Pg.1911]

Often, the walkthrough and analysis of the process flow sheets lead to an early identification of P2 and waste-reduction opportunities. By studying the process flow sheets and information gathered from the walkthrough, and by conducting brainstorming sessions with team members, the team will be able to identify sources... [Pg.363]

Solution. As with all material-balance systems, our first step is to start with a process flow sheet. Figure 2 provides a simplified flow scheme, along with a definition of the system boundary to be considered in the analysis. From this drawing we can establish the basis for the calculations. [Pg.372]

Even, limited PSAs use and contain much information. This information may come as memos and process reports and flow sheets, equipment layout, system descriptions, toxic inventory, hazardous chemical reactions, test, maintenance and operating descriptions. From this, data and analyses are prepared regarding release quantities, doses, equipment reliability, probability of exposure, and the risk to workers, public, and environment. An executive summary analysis is detailed, and recommendations made for risk reduction. Thus the information will be text, calculations of envelope fracture stresses, temperatures, fire propagation, air dispersion, doses, and failure probabilities - primarily in tabular form. [Pg.300]

Other preparations and isolations. If damp methylenedi(nitroformamide) is allowed to stand for several days, the odor of formic acid is noticed, and MEDINA can be isolated from the residue (Ref 11, p 14). The details of scale-up to 150 lb batches, including exp details and flow sheets, and further scale-up with the aim of prodn of 1000 lbs are given. The report describes a fume-off and fire which occurred during the S3rd run. The cause was attributed to a stuck valve which allowed nitric acid to build up in the reactor (Ref 13, p 57). In Ref 16, p 73 there are cost analysis data for pilot plant and large scale prodn, flow sheet for a proposed coml plant, and material balances. The action of acet anhydr on N,Nf-bis(hydroxy-methyl)MEDlNA regenerates MEDINA (Ref 6) the diNa salt of N. N trinitrotrimethylene-diamine, on warming with me ale, ppts the Na salt of MEDINA... [Pg.68]

Figure 1 Is a flow sheet showing some significant aspects of the Iterative analysis. The first step In the program Is to Input data for about 50 physical, chemical and kinetic properties of the reactants. Each loop of this analysis Is conducted at a specified solution temperature T K. Some of the variables computed In each loop are the monomer conversion, polymer concentration, monomer and polymer volume fractions, effective polymer molecular weight, cumulative number average molecular weight, cumulative weight average molecular weight, solution viscosity, polymerization rate, ratio of polymerization rates between the current and previous steps, the total pressure and the partial pressures of the monomer, the solvent, and the nitrogen. Figure 1 Is a flow sheet showing some significant aspects of the Iterative analysis. The first step In the program Is to Input data for about 50 physical, chemical and kinetic properties of the reactants. Each loop of this analysis Is conducted at a specified solution temperature T K. Some of the variables computed In each loop are the monomer conversion, polymer concentration, monomer and polymer volume fractions, effective polymer molecular weight, cumulative number average molecular weight, cumulative weight average molecular weight, solution viscosity, polymerization rate, ratio of polymerization rates between the current and previous steps, the total pressure and the partial pressures of the monomer, the solvent, and the nitrogen.
Gunn, D. J. (1982) IChemE Symposium Series No. 74,99, A versatile method of flow sheet analysis for process evolution and modification. [Pg.187]

In this chapter only the first step in the specification of the control systems for a process will be considered the preparation of a preliminary scheme of instrumentation and control, developed from the process flow-sheet. This can be drawn up by the process designer based on his experience with similar plant and his critical assessment of the process requirements. Many of the control loops will be conventional and a detailed analysis of the system behaviour will not be needed, nor justified. Judgement, based on experience, must be used to decide which systems are critical and need detailed analysis and design. [Pg.228]

Some recent applications have benefited from advances in computing and computational techniques. Steady-state simulation is being used off-line for process analysis, design, and retrofit process simulators can model flow sheets with up to about a million equations by employing nested procedures. Other applications have resulted in great economic benefits these include on-line real-time optimization models for data reconciliation and parameter estimation followed by optimal adjustment of operating conditions. Models of up to 500,000 variables have been used on a refinery-wide basis. [Pg.86]

Heat and Mass Balance Analysis of the Process Flow Sheet..141... [Pg.127]

Heat/mass balance analysis of the process flow sheet... [Pg.139]

Figure 2.5a and b show flow sheets for the determination of phosphate by flow injection analysis and reversed flow injection analysis, respectively. [Pg.96]

Gas-phase Kinetics. A better appreciation of the experiments to be discussed later will be obtained after a review of some experimental aspects of the transient method. Here we deal with experiments at atmospheric pressure. A flow sheet for kinetic measurements is given in Fig. 1, a descendant of that first given by Bennett et al. (15). Chemical analysis of the gases during transients is ideally done by a mass spectrometer, although Kobayashi and Kobayashi (4 ) used a number of gas chromatographs in order to get samples sufficiently frequently. [Pg.2]

Hazard and Operability Analysis (Hazop) (Kletz, 1992) is one of the most used safety analysis methods in the process industry. It is one of the simplest approaches to hazard identification. Hazop involves a vessel to vessel and a pipe to pipe review of a plant. For each vessel and pipe the possible disturbances and their potential consequences are identified. Hazop is based on guide words such as no, more, less, reverse, other than, which should be asked for every pipe and vessel (Table 1). The intention of the quide words is to stimulate the imagination, and the method relies very much on the expertise of the persons performing the analysis. The idea behind the questions is that any disturbance in a chemical plant can be described in terms of physical state variables. Hazop can be used in different stages of process design but in restricted mode. A complete Hazop study requires final process plannings with flow sheets and PID s. [Pg.24]

The engineering analysis and design of these operations addresses questions which are different than those addressed in connection with the shaping operations. This is illustrated in Fig. 1 which is a flow sheet, cited by Nichols and Kheradi (1982), for the continuous conversion of latex in the manufacture of acrylonitrile-butadiene-styrene (ABS). In this process three of the nonshaping operations are shown (1) a chemical reaction (coagulation) (2) a liquid-liquid extraction operation which involves a molten polymer and water and (3) a vapor-liquid stripping operation which involves the removal of a volatile component from the molten polymer. The analysis and design around the devolatilization section, for example, would deal with such questions as how the exit concentration of... [Pg.62]

The data obtained from small-scale continuous operations will be required to determine whether the process should be investigated on a larger scale, such as a pilot plant. These data should be sufficient to draw a conceptual flow sheet, which will include a number of stages for extraction, scrubbing [10], and stripping the flow rates, size and type of equipment, and the various parameters considered earlier in this chapter. Another important aspect should also be considered in the continuous test work, and that is chemical analysis of both the aqueous and organic phases for their various components. [Pg.303]

If the TE does not pass through a minimum or maximum, but continues to decline or to increase with the number of equipment items or equipment size, the next step is to look at the flow sheet for equipment upstream or downstream from the selected item. It may be necessary to group two or more items and treat them as one in the analysis. Such a system is said to be interactive, since more than one item affects the optimum results. An example of such an interactive system is the... [Pg.41]

Laboratory Extractors. Pilot-Scale Testing, and Scale-Up. Several laboratory units arc useful in analysis, process control, and process studies. The AKUFVE contactor incorporates a separate mixer and centrifugal separator. It is an efficient instrument for rapid and accurate measurement of partition coefficients, as well as for obtaining reaction kinetic data. Miniature mixer-settler assemblies set up as continuous, bench-scale, multistage, countercurrent, liquid-liquid contactors are particularly useful Tor the preliminary laboratory work associated with flow-sheet development and optimization because these give a known number of theoretical stages. [Pg.596]

Exergy Analysis with a Flow Sheet Program... [Pg.155]


See other pages where Analysis Flow Sheet is mentioned: [Pg.549]    [Pg.549]    [Pg.72]    [Pg.528]    [Pg.444]    [Pg.444]    [Pg.454]    [Pg.459]    [Pg.1774]    [Pg.1840]    [Pg.270]    [Pg.42]    [Pg.67]    [Pg.98]    [Pg.200]    [Pg.277]    [Pg.141]    [Pg.39]    [Pg.188]    [Pg.294]    [Pg.444]    [Pg.444]    [Pg.454]    [Pg.459]    [Pg.528]    [Pg.168]   


SEARCH



Exergy Analysis with a Flow Sheet Program

Flow sheets

Flow-sheeting

© 2024 chempedia.info