Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acids urine

The metabolic team was consulted and obtained STAT biochemical labs including plasma acylcamitine profile, plasma amino acids, urine organic acids, and urine orotic acid. Labs showed elevated orotic acid as well as a plasma amino-acid pattern consistent with ornithine transcarbamylase (OTC) deficiency. The newborn screen was normal. The infant was placed on a protein-restricted diet, supplemented with arginine, and started on nitrogen-scavenging medications. [Pg.25]

Amino acids Urine mrnolL and pmoir No Inborn errors of metabolism... [Pg.697]

H2N (CH2]5 NH2. a syrupy fuming liquid, b.p. 178-180 - C. Soluble in water and alcohol. Cadaverine is one of the ptomaines and is found, associated with pulrescine, in putrefying tissues, being formed by bacterial action from the amino-acid lysine. It is found in the urine in some cases of the congenital disease cystinuria. The free base is poisonous, but its salts are not. [Pg.74]

M.p. 140°C. An amino-acid occasionally formed in the hydrolysis products of proteins and occurring in the urine of some birds as dibenzoylornithine. Ornithine is a precursor of arginine in plants, animals and bacteria. [Pg.290]

Since dietary cereals are low in sulfur-containing amino acids, they produce an alkaline urine which favors the retention of bone minerals. In post-menopausal women, there appears to be some interaction between the diet and the effect produced by estrogens on bone mineral content (28). [Pg.352]

Factors controlling calcium homeostasis are calcitonin, parathyroid hormone(PTH), and a vitamin D metabolite. Calcitonin, a polypeptide of 32 amino acid residues, mol wt - SGOO, is synthesized by the thyroid gland. Release is stimulated by small increases in blood Ca " concentration. The sites of action of calcitonin are the bones and kidneys. Calcitonin increases bone calcification, thereby inhibiting resorption. In the kidney, it inhibits Ca " reabsorption and increases Ca " excretion in urine. Calcitonin operates via a cyclic adenosine monophosphate (cAMP) mechanism. [Pg.376]

In the case of hyperphenylalaninaemia, which occurs ia phenylketonuria because of a congenital absence of phenylalanine hydroxylase, the observed phenylalanine inhibition of proteia synthesis may result from competition between T.-phenylalanine and L-methionine for methionyl-/RNA. Patients sufferiag from maple symp urine disease, an inborn lack of branched chain oxo acid decarboxylase, are mentally retarded unless the condition is treated early enough. It is possible that the high level of branched-chain amino acids inhibits uptake of L-tryptophan and L-tyrosiae iato the brain. Brain iajury of mice within ten days after thek bkth was reported as a result of hypodermic kijections of monosodium glutamate (MSG) (0.5—4 g/kg). However, the FDA concluded that MSG is a safe kigredient, because mice are bom with underdeveloped brains regardless of MSG kijections (106). [Pg.283]

SuperchlorinationShock Treatment. Superchlorination or shock treatment of pool water is necessary since accumulation of organic matter, nitrogen compounds, and algae consumes free available chlorine and impedes disinfection. Reaction of chlorine with constituents of urine or perspiration (primarily NH" 4, amino acids, creatinine, uric acid, etc) produces chloramines (N—Cl compounds) which are poor disinfectants because they do not hydrolyze significantly to HOCl (19). For example, monochloramine (NH2CI) is only 1/280 as effective as HOCl against E. coli (20). [Pg.298]

Urodilantin, a 32-amino acid natriuretic peptide synthesized by the kidney and found in urine but not in plasma, is beheved to compHcate the interpretation of the natriuretic effects of ANP (58). There have been reports of natriuretic peptides related to ANP that have been isolated from several sources, including the brain, eg, brain natriuretic peptide (BNP) [114471-18-0] (59—61). [Pg.208]

RS- P-Aminoisobutyric acid (a-methyl-P-alanine) [10569-72-9] M 103.1, m 176-178 , 178-180 , 181-182 , R -(-)- isomer [144-90-1] m 183 , [a] -21 (c 0.43, HjO), pKes,(,) 3.7, pKEst(2) 10.2. Colorless prisms from hot H O, were powdered and dried in vacuo. The purity is checked by paper chromatography (Whatman 1) using ninhydrin spray to visualise the amino acid Rp values in 95% MeOH and n-PrOH/5N HCOOH (8 2) are 0.36 and 0.50 respectively. [Kupiecki and Coon Biochem Prep 7 20 7960 Pollack J Am Chem Soc 65 1335 7943.] The R-enantiomer, isolated from iris bulbs or human urine was crystd from H2O and sublimed in vacuo [Asen et al. J Biol Chem 234 343 7959]. The RS-hydrochloride was recrystd from EtOH/Et20 m 128-129 , 130° [Bbhme et al. Chem Ber92 1258, 1260, 1261 7959]. [Pg.107]

Amino acids protein hydrolysates, bacterial cultures, food, urine various... [Pg.257]

In more recent times chemically defined basal media have been elaborated, on which the growth of various lactic acid bacteria is luxuriant and acid production is near-optimal. The proportions of the nutrients in the basal media have been determined which induce maximum sensitivity of the organisms for the test substance and minimize the stimulatory or inhibitory action of other nutrilites introduced with the test sample. Assay conditions have been provided which permit the attainment of satisfactory precision and accuracy in the determination of amino acids. Experimental techniques have been provided which facilitate the microbiological determination of amino acids. On the whole, microbiological procedures now available for the determination of all the amino acids except hydroxy-proline are convenient, reasonably accurate, and applicable to the assay of purified proteins, food, blood, urine, plant products, and other types of biological materials. On the other hand, it is improbable that any microbiological procedure approaches perfection and it is to be expected that old methods will be improved and new ones proposed by the many investigators interested in this problem. [Pg.21]

PTH is the most important regulator of bone remodelling and calcium homeostasis. PTH is an 84-amino acid polypeptide and is secreted by the parathyroid glands in response to reductions in blood levels of ionised calcium. The primary physiological effect of PTH is to increase serum calcium. To this aim, PTH acts on the kidney to decrease urine calcium, increase mine phosphate, and increase the conversion of 25-OH-vitamin D to l,25-(OH)2-vitamin D. PTH acts on bone acutely to increase bone resorption and thus release skeletal calcium into the circulation. However, due to the coupling of bone resorption and bone formation, the longer-term effect of increased PTH secretion is to increase both bone resorption and bone formation. [Pg.279]

Excretion into urine of ammonia produced by renal mbu-lar cells facilitates cation conservation and regulation of acid-base balance. Ammonia production from intracellular renal amino acids, especially glutamine, increases in metabolic acidosis and decreases in metabolic alkalosis. [Pg.245]

As the name implies, the odor of urine in maple syrup urine disease (brancbed-chain ketonuria) suggests maple symp or burnt sugar. The biochemical defect involves the a-keto acid decarboxylase complex (reaction 2, Figure 30-19). Plasma and urinary levels of leucine, isoleucine, valine, a-keto acids, and a-hydroxy acids (reduced a-keto acids) are elevated. The mechanism of toxicity is unknown. Early diagnosis, especially prior to 1 week of age, employs enzymatic analysis. Prompt replacement of dietary protein by an amino acid mixture that lacks leucine, isoleucine, and valine averts brain damage and early mortality. [Pg.259]

The catabolism of leucine, valine, and isoleucine presents many analogies to fatty acid catabolism. Metabolic disorders of branched-chain amino acid catabolism include hypervalinemia, maple syrup urine disease, intermittent branched-chain ketonuria, isovaleric acidemia, and methylmalonic aciduria. [Pg.262]

The smdy of tissue protein breakdown in vivo is difficult, because amino acids released during intracellular breakdown of proteins can be extensively reutilized for protein synthesis within the cell, or the amino acids may be transported to other organs where they enter anabohc pathways. However, actin and myosin are methylated by a posttranslational reaction, forming d-methylliistidine. During intracellular breakdown of actin and myosin, 3-methylhistidine is released and excreted into the urine. The urinary output of the methylated amino acid provides a rehable index of the rate of myofibrillar protein breakdown in the musculature of human subjects. [Pg.576]

Amino Acids, Thin-layer chromatography has found wide application in the clinical chemistry laboratory. An application that is practicable in the Laboratory of Neonatology is the screening of serum and urine for the amino acidopathies. In order to do this we use a micro ultrafiltering apparatus which has been designed in our laboratory (37). This is seen in Figure 29. [Pg.138]

There are many proteins in the human body. A few hundreds of these compounds can be identified in urine. The qualitative determination of one or a series of proteins is performed by one of the electrophoresis techniques. Capillary electrophoresis can be automated and thus more quantified (Oda et al. 1997). Newer techniques also enable quantitative determination of proteins by gel electrophoresis (Wiedeman and Umbreit 1999). For quantitative determinations, the former method of decomposition into the constituent amino acids was followed by an automated spectropho-tometric measurement of the ninhydrin-amino add complex. Currently, a number of methods are available, induding spectrophotometry (Doumas and Peters 1997) and, most frequently, ELISAs. Small proteins can be detected by techniques such as electrophoresis, isoelectric focusing, and chromatography (Waller et al. 1989). These methods have the advantage of low detection limits. Sometimes, these methods have a lack of specifidty (cross-over reactions) and HPLC techniques are increasingly used to assess different proteins. The state-of-the-art of protein determination was mentioned by Walker (1996). [Pg.208]

As a more sensitive detection method, MS can be very useful in amino acid determinations. For example, S-carboxymethyl-(R) cysteine or SCMC, is a mucolytic agent used in the treatment of respiratory diseases. The development of a method utilizing high performance IEC and atmospheric pressure ionization (API) mass spectrometry to quantify SCMC in plasma has been described.66 This method is simple (no derivatization needed), rapid (inn time 16 min.), sensitive (limit of quantification 200 ng/mL in human plasma), and has an overall throughput of more than 60 analyses per day. API-MS was used successfully with IEC to determine other sulfur-containing amino acids and their cyclic compounds in human urine.67 IEC has also been used as a cleanup step for amino acids prior to their derivatization and analysis by gas chromatography (GC), either alone or in conjunction with MS.68 69... [Pg.291]

Changes to the urinary tract in pregnant women predispose them to an increased incidence of bacteriuria, and subsequent urinary tract infections that may follow. These changes are not limited to amino acid and other nutrient concentrations in the urine, but extend to physiologic changes such as reduced bladder tone and dilation of the renal pelvis and ureters.22,23... [Pg.1156]

Since many essential nutrients (e.g., monosaccharides, amino acids, and vitamins) are water-soluble, they have low oil/water partition coefficients, which would suggest poor absorption from the GIT. However, to ensure adequate uptake of these materials from food, the intestine has developed specialized absorption mechanisms that depend on membrane participation and require the compound to have a specific chemical structure. Since these processes are discussed in Chapter 4, we will not dwell on them here. This carrier transport mechanism is illustrated in Fig. 9C. Absorption by a specialized carrier mechanism (from the rat intestine) has been shown to exist for several agents used in cancer chemotherapy (5-fluorouracil and 5-bromouracil) [37,38], which may be considered false nutrients in that their chemical structures are very similar to essential nutrients for which the intestine has a specialized transport mechanism. It would be instructive to examine some studies concerned with riboflavin and ascorbic acid absorption in humans, as these illustrate how one may treat urine data to explore the mechanism of absorption. If a compound is... [Pg.48]


See other pages where Amino acids urine is mentioned: [Pg.35]    [Pg.2237]    [Pg.730]    [Pg.35]    [Pg.2237]    [Pg.730]    [Pg.333]    [Pg.150]    [Pg.183]    [Pg.27]    [Pg.74]    [Pg.475]    [Pg.144]    [Pg.203]    [Pg.268]    [Pg.304]    [Pg.608]    [Pg.262]    [Pg.165]    [Pg.17]    [Pg.340]    [Pg.217]    [Pg.443]    [Pg.646]    [Pg.652]    [Pg.948]    [Pg.289]    [Pg.115]    [Pg.194]    [Pg.196]    [Pg.308]    [Pg.367]   
See also in sourсe #XX -- [ Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.33 , Pg.34 , Pg.44 , Pg.66 ]




SEARCH



Acids urine

© 2024 chempedia.info