Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carrier transport

Charge carrier transport in molecular crystals has been extensively studied employing the time of flight (TOF) method. Mobility values are typically in the order of 0.1 to 1 dll V s and weakly temperature dependent if measured near room temperature. At lower temperatures pt (T) often approaches activated behavior. With the advent of extremely clean samples it became clear, however, tliat this is due to trapping. In its absence, pt (T) approaches a power law dependence, [Pg.384]

Conventional TOF studies, performed on sandwich-type structures, yield signals with anomalously broad tails. At lower temperatures they tend to loose their inflection point, which marks the arrival of the carrier sheet at the exit contact, [Pg.384]

It had become practice to analyze the n(T,F) behavior in terms of Gill s empirical equation [50]  [Pg.385]

It is unrealistic to assume that systems of different chemical structure, and prepared via chemically very different routes, contain a similar amount of impurities that are charged when empty  [Pg.385]

p can deviate from the vine predicted by Poole-Frenkel (PF) theory, [Pg.385]


Wlrile quaternary layers and stmctures can be exactly lattice matched to tire InP substrate, strain is often used to alter tire gap or carrier transport properties. In Ga In s or Ga In Asj grown on InP, strain can be introduced by moving away from tire lattice-matched composition. In sufficiently tliin layers, strain is accommodated elastically, witliout any change in the in-plane lattice constant. In tliis material, strain can be eitlier compressive, witli tire lattice constant of tire layer trying to be larger tlian tliat of tire substrate, or tensile. [Pg.2881]

Most of our ideas about carrier transport in semiconductors are based on tire assumption of diffusive motion. Wlren tire electron concentration in a semiconductor is not unifonn, tire electrons move diffuse) under tire influence of concentration gradients, giving rise to an additional contribution to tire current. In tliis motion, electrons also undergo collisions and tlieir temporal and spatial distributions are described by the diffusion equation. The... [Pg.2883]

With the Monte Carlo method, the sample is taken to be a cubic lattice consisting of 70 x 70 x 70 sites with intersite distance of 0.6 nm. By applying a periodic boundary condition, an effective sample size up to 8000 sites (equivalent to 4.8-p.m long) can be generated in the field direction (37,39). Carrier transport is simulated by a random walk in the test system under the action of a bias field. The simulation results successfully explain many of the experimental findings, notably the field and temperature dependence of hole mobilities (37,39). [Pg.411]

Global AMI.5 sun illumination of intensity 100 mW/cm ). The DOS (or defect) is found to be low with a dangling bond (DB) density, as measured by electron spin resonance (esr) of - 10 cm . The inherent disorder possessed by these materials manifests itself as band tails which emanate from the conduction and valence bands and are characterized by exponential tails with an energy of 25 and 45 meV, respectively the broader tail from the valence band provides for dispersive transport (shallow defect controlled) for holes with alow drift mobiUty of 10 cm /(s-V), whereas electrons exhibit nondispersive transport behavior with a higher mobiUty of - 1 cm /(s-V). Hence the material exhibits poor minority (hole) carrier transport with a diffusion length <0.5 //m, which puts a design limitation on electronic devices such as solar cells. [Pg.360]

Waterborne Transport. Despite natural limitations, the transportation of chemicals by water has enjoyed substantial growth, especially siace the ead of World War 11. Assisted by governmental developmeat of the inland waterways system, including locks and other navigational aids, water carriers transport large quantities of bulk chemicals in barges between inland ports or between such ports and coastal ports. In addition, bulk chemicals ate transported by self-propelled tank vessels between U.S. coastal points, and between U.S. ports and overseas destinations. In 1989, 56.1 million metric tons (61.9 million short tons) of chemicals were transported in the U.S. domestic waterborne commerce (16). [Pg.257]

Fig. 8. Schematic illustration of the tunnelling in a CNT-based device (a) under no bias voltage, there are no orbitals available for conduction, (b) with small bias voltage, only one molecular orbital of a CNT contributes to the carrier transport and (c) when the next molecular orbital enters the bias window, current increases stepwise. Gate voltage can shift all the orbitals upward or downward. AE indicates the energy separation of molecular orbitals. Fig. 8. Schematic illustration of the tunnelling in a CNT-based device (a) under no bias voltage, there are no orbitals available for conduction, (b) with small bias voltage, only one molecular orbital of a CNT contributes to the carrier transport and (c) when the next molecular orbital enters the bias window, current increases stepwise. Gate voltage can shift all the orbitals upward or downward. AE indicates the energy separation of molecular orbitals.
With respect to the carrier mechanism, the phenomenology of the carrier transport of ions is discussed in terms of the criteria and kinetic scheme for the carrier mechanism the molecular structure of the Valinomycin-potassium ion complex is considered in terms of the polar core wherein the ion resides and comparison is made to the Enniatin B complexation of ions it is seen again that anion vs cation selectivity is the result of chemical structure and conformation lipid proximity and polar component of the polar core are discussed relative to monovalent vs multivalent cation selectivity and the dramatic monovalent cation selectivity of Valinomycin is demonstrated to be the result of the conformational energetics of forming polar cores of sizes suitable for different sized monovalent cations. [Pg.176]

In what follows, the phenomenology of carrier transport will be briefly reviewed along with the mechanism of the Valinomycin model of carrier transport. The development of the molecular structure of Valinomycin will be considered in some detail, since the key to the dramatic selectivity of Valinomycin is thought to reside in the energetics of the molecular structure. Confidence in an understanding of the molecular structure of the Valinomycin-cation complex becomes tantamount to confidence in the presented basis of ion selectivity. [Pg.206]

The utility and importance of multi-layer device structures was demonstrated in the first report of oiganic molecular LEDs [7]. Since then, their use has been widespread in both organic molecular and polymer LEDs [45, 46], The details of the operating principles of many multi-layer structures continue to be investigated [47—49], The relative importance of charge carrier blocking versus improved carrier transport of the additional, non-luminescent layers is often unclear. The dramatic improvements in diode performance and, in many cases, device lifetime make a detailed understanding of multi-layer device physics essential. [Pg.191]

Charge Carrier Transport in Conjugated Polymers 12.4.3.1 Timc-of-Flight Studies... [Pg.212]

Photodetectors operate by carrier transport across a semiconductor junction. A wide variety of these photodiodes are available, such as Schottky diodes, phototransistors, and avalanche photodetectors. Typical photodetector materials are gallium arsenic phosphide and gallium phosphide, which are produced by MOCVD or MBE. [Pg.390]

A sound information transfer system to avoid confusion of chemical identities and to ensure the specific risks of each load are identified and made known to the carrier/transporter. [Pg.482]

Ubiquinone, known also as coenzyme Q, plays a crucial role as a respiratory chain electron carrier transport in inner mitochondrial membranes. It exerts this function through its reversible reduction to semiquinone or to fully hydrogenated ubiquinol, accepting two protons and two electrons. Because it is a small lipophilic molecule, it is freely diffusable within the inner mitochondrial membrane. Ubiquinones also act as important lipophilic endogenous antioxidants and have other functions of great importance for cellular metabolism. ... [Pg.106]

Since many essential nutrients (e.g., monosaccharides, amino acids, and vitamins) are water-soluble, they have low oil/water partition coefficients, which would suggest poor absorption from the GIT. However, to ensure adequate uptake of these materials from food, the intestine has developed specialized absorption mechanisms that depend on membrane participation and require the compound to have a specific chemical structure. Since these processes are discussed in Chapter 4, we will not dwell on them here. This carrier transport mechanism is illustrated in Fig. 9C. Absorption by a specialized carrier mechanism (from the rat intestine) has been shown to exist for several agents used in cancer chemotherapy (5-fluorouracil and 5-bromouracil) [37,38], which may be considered false nutrients in that their chemical structures are very similar to essential nutrients for which the intestine has a specialized transport mechanism. It would be instructive to examine some studies concerned with riboflavin and ascorbic acid absorption in humans, as these illustrate how one may treat urine data to explore the mechanism of absorption. If a compound is... [Pg.48]


See other pages where Carrier transport is mentioned: [Pg.407]    [Pg.408]    [Pg.409]    [Pg.410]    [Pg.411]    [Pg.413]    [Pg.352]    [Pg.379]    [Pg.263]    [Pg.396]    [Pg.176]    [Pg.206]    [Pg.206]    [Pg.158]    [Pg.167]    [Pg.194]    [Pg.205]    [Pg.205]    [Pg.212]    [Pg.295]    [Pg.518]    [Pg.519]    [Pg.520]    [Pg.521]    [Pg.522]    [Pg.523]    [Pg.524]    [Pg.525]    [Pg.526]    [Pg.527]    [Pg.528]    [Pg.529]    [Pg.565]    [Pg.547]    [Pg.176]   
See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.283 , Pg.307 , Pg.315 , Pg.320 , Pg.326 ]

See also in sourсe #XX -- [ Pg.369 ]

See also in sourсe #XX -- [ Pg.556 ]

See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Carriers carrier transport

© 2024 chempedia.info