Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum particles combustion

Thermochemical Features of Aluminum Particles Combustion (Theoretical Background)... [Pg.125]

Aluminum-containing propellants deflver less than the calculated impulse because of two-phase flow losses in the nozzle caused by aluminum oxide particles. Combustion of the aluminum must occur in the residence time in the chamber to meet impulse expectations. As the residence time increases, the unbumed metal decreases, and the specific impulse increases. The soHd reaction products also show a velocity lag during nozzle expansion, and may fail to attain thermal equiUbrium with the gas exhaust. An overall efficiency loss of 5 to 8% from theoretical may result from these phenomena. However, these losses are more than offset by the increase in energy produced by metal oxidation (85—87). [Pg.39]

If the temperature of a molten lead—calcium (tin)—aluminum ahoy is not kept sufficiently high, finely divided aluminum particles may precipitate and float to the top of the melt. These may become mixed with oxides of lead in the dross. The finely divided aluminum particles can react violently with the oxides in the dross if ignited. Ignition can occur if attempts are made to melt or bum the dross away from areas of buildup with a torch. The oxides in the dross can supply oxygen for the combustion of aluminum once ignited. [Pg.62]

Most theoretical studies have concentrated on the analysis of the combustion zone of nonaluminized propellant systems. In actual practice, propellants containing aluminum are used in many applications. One study in which aluminum has been included has recently been published by Dunlop and Crowe (D2). In this study, the combustion zone is idealized to consist of four regions, as shown in Fig. 21. The results of these simplified one-dimensional analyses suggest that the combustion of aluminum particles in the gas... [Pg.49]

Similar phenomena have also been observed in the combustion of composite propellants. Eisel (El) has observed that there is a unique frequency-pressure relation in a low-pressure region where nonacoustic instability results. He speculates that this preferred frequency is related to the periodic appearance and depletion of the aluminum particles on the propellant surface. High-speed pictures confirm the periodic sluffing of aluminum, but its relation to the preferred frequency is still not clear. [Pg.57]

As mentioned in the previous section, the condition for vapor phase combustion versus heterogeneous combustion may be influenced by pressure by its effect on the flame temperature (Tvol or Td) as well as by its effect on the vaporization temperature of the metal reactant (Th). For aluminum combustion in pure oxygen, combustion for all practical conditions occurs in the vapor phase. In air, this transition would be expected to occur near 200 atm as shown in Fig. 9.15 where for pressures greater than —200 atm, the vaporization temperature of pure aluminum exceeds the adiabatic flame temperature. This condition is only indicative of that which will occur in real particle combustion systems as some reactant vaporization will occur at temperatures below the boiling point... [Pg.512]

Combustion of aluminum particle as fuel, and oxygen, air, or steam as oxidant provides an attractive propulsion strategy. In addition to hydrocarbon fuel combustion, research is focussed on determining the particle size and distribution and other relevant parameters for effectively combusting aluminum/oxygen and aluminum/steam in a laboratory-scale atmospheric dump combustor by John Foote at Engineering Research and Consulting, Inc. (Chapter 8). A Monte-Carlo numerical scheme was utilized to estimate the radiant heat loss rates from the combustion products, based on the measured radiation intensities and combustion temperatures. These results provide some of the basic information needed for realistic aluminum combustor development for underwater propulsion. [Pg.5]

Results of an experimental program in which aluminum particles were burned with steam and mixtures of oxygen and argon in small-scale atmospheric dump combustor are presented. Measurements of combustion temperature, radiation intensity in the wavelength interval from 400 to 800 nm, and combustion products particle size distribution and composition were made. A combustion temperature of about 2900 K was measured for combustion of aluminum particles with a mixture of 20%(wt.) O2 and 80%(wt.) Ar, while a combustion temperature of about 2500 K was measured for combustion of aluminum particles with steam. Combustion efficiency for aluminum particles with a mean size of 17 yum burned in steam with O/F) / 0/F)st 1-10 and with residence time after ignition estimated at 22 ms was about 95%. A Monte Carlo numerical method was used to estimate the radiant heat loss rates from the combustion products, based on the measured radiation intensities and combustion temperatures. A peak heat loss rate of 9.5 W/cm was calculated for the 02/Ar oxidizer case, while a peak heat loss rate of 4.8 W/cm was calculated for the H2O oxidizer case. [Pg.127]

The size distribution for the large diameter fraction of the H2O oxidizer combustion products is shown in Fig. 8.8, along with the size distribution of the aluminum powder fuel. The mean particle size of the unburned fuel fraction in the combustion products is about 10.7 pm, while the mean size of the fuel particles is 17.4 pm. Most sources report that burning aluminum particles follow a rate law of the form d = do" — Pt, where / is a constant and the exponent n is between 1.5 and 2.0. In that case, the size distribution of the unburned fraction of the combustion products would be expected to be larger than that of the fuel. A size distribution of unburned aluminum smaller than that of the parent fuel is more consistent with particles that never ignited, since the larger particles would probably be undersampled. On the other hand, it seems unlikely that any particle could... [Pg.135]

In this study, measurements of the combustion temperature, radiation intensity, combustion products particle size distribution, and combustion efficiency have been made for combustion of aluminum particles with steam in a small-scale atmospheric dump combustor. This data will be useful for designers of combustion chambers for burning of aluminum powder with steam. [Pg.139]

Friedman, R., and A. Macek. 1962. Ignition and combustion of aluminum particles in hot ambient gases. Combustion Flame. 6. [Pg.140]

Keshavan, R., and T. A. Brzustowski. 1972. Ignition of aluminum particle streams. Combustion Science Technology 6 203-9. [Pg.140]

Wilson, R. P., Jr. 1970. Combustion of aluminum particles in 02/Ar. Doctoral Dissertation. San Diego University of California. [Pg.140]

Marion, M., et al. 1995. Studies on the ignition and burning of aluminum particles. Paper No. 95S-060, Joint Technical Meeting of Central and Western States Sections and Mexican National Section of The Combustion Institute and American Flame Research Committee, San Antonio, TX. April 23-26. [Pg.140]

Bucher, P., et al. 1996. Observations on aluminum particles burning in various oxidizers. 33rd JANNAF Combustion Subcommittee Meeting. [Pg.140]

When aluminized AP composite propellant burns, a high mole fraction of aluminum oxide is produced as a combustion product, which generates visible smoke. If smoke has to be avoided, e. g. for miUtary purposes or a fireworks display, aluminum particles cannot be added as a component of an AP composite propellant In addition, a large amount of white smoke is produced even when non-aluminized AP composite propellants bum. This is because the combustion product HCl acts as a nucleus for moisture in the atmosphere and relatively large-sized water drops are formed as a fog or mist This physical process only occurs when the relative humidity in the atmosphere is above about 60%. If, however, the atmospheric temperature is below 260 K, white smoke is again formed because of the condensation of water vapor with HCl produced as combustion products. If the HCl smoke generated by AP combustion cannot be tolerated, the propellant should be replaced with a double-base propellant or the AP particles should be replaced with another... [Pg.96]

Azide polymers such as GAP and BAMO are also used to formulate AP composite propellants in order to give improved specific impulses compared with those of the above-mentioned AP-HTPB propellants. Since azide polymers are energetic materials that burn by themselves, the use of azide polymers as binders of AP particles, with or without aluminum particles, increases the specific impulse compared to those of AP-HTPB propellants. As shown in Fig. 4.15, the maximum of 260 s is obtained at (AP) = 0.80 and is approximately 12 % higher than that of an AP-HTPB propellant because the maximum loading density of AP particles is obtained at about (AP) = 0.86 in the formulation of AP composite propellants. Since the molecular mass of the combustion products. Mg, remains relatively unchanged in the region above (AP) = 0.8, decreases rapidly as (AP) increases. [Pg.98]

When HNF or ADN particles are mixed with a GAP copolymer containing aluminum particles, HNF-GAP and ADN-GAP composite propellants are formed, respectively. A higher theoretical specific impulse is obtained as compared to those of aluminized AP-HTPB composite propellants.However, the ballistic properties of ADN, HNIW, and HNF composite propellants, such as pressure exponent, temperature sensitivity, combustion instability, and mechanical properties, still need to be improved if they are to be used as rocket propellants. [Pg.230]

The AI-H2O reaction increases the temperature and the number of moles of gas in the bubble by the production of H2 molecules. The pressure in the bubble is thereby increased. As a result, the bubble energy and shock wave energy are increased. It must be understood that the oxidation of aluminum powder is not like that of gaseous reactants. Reaction occurs at the surface of each aluminum particle and leads to the formahon of an aluminum oxide layer that coats the particle. The oxidized layer prevents the oxidation of the interior particle. The combustion efficiency of aluminum parhcles increases with decreasing particle size.l =l The shock wave energy and bubble energy are increased by the use of nano-sized aluminum powders. [Pg.271]

When fine aluminum particles are incorporated into AP pyrolants, aluminum oxide (AI2O3) particles are formed when they bum. Dispersal of these aluminum oxide particles in the atmosphere generates white smoke even when the atmosphere is dry. The mass fraction of aluminum particles added is approximately 0.2 for the complete combustion of AP pyrolants. Though an excess of aluminum... [Pg.343]

AP composite propellants without aluminum particles are termed reduced-smoke propellants and are employed in tactical missiles to conceal their launch site and flight trajectory. No visible smoke is formed when the relative humidity of the atmosphere is less than about 40%. However, since high-frequency combustion oscillation tends to occur in the combustion chamber in the absence of solid particles that serve to absorb the oscillatory energy, a mass fraction of 0.01-0.05 of metallic particles is still required for the reduced-smoke propellants. These particles and/or their oxide particles generate thin smoke trails. The white smoke trail includes the white fog generated by the HCl molecules and the condensed water vapor of the humid atmosphere. [Pg.354]

Fig. 13.25 Combustion instability is suppressed as the concentration of aluminum particles is increased (the average designed chamber pressure is 4.5 MPa). Fig. 13.25 Combustion instability is suppressed as the concentration of aluminum particles is increased (the average designed chamber pressure is 4.5 MPa).
Metal particles, most commonly aluminum particles, are also known as additives for propellants and pyrolants that increase the combustion temperature and hence also the specific impulse. However, a heat-transfer process from the high-tempera-ture gas to the aluminum particles is required to melt the particles and then a subsequent diffusional process of oxidizer fragments toward each aluminum particle... [Pg.407]


See other pages where Aluminum particles combustion is mentioned: [Pg.88]    [Pg.115]    [Pg.88]    [Pg.115]    [Pg.219]    [Pg.233]    [Pg.241]    [Pg.404]    [Pg.129]    [Pg.129]    [Pg.137]    [Pg.139]    [Pg.97]    [Pg.264]    [Pg.303]    [Pg.305]    [Pg.344]    [Pg.396]    [Pg.397]    [Pg.408]    [Pg.409]    [Pg.97]   
See also in sourсe #XX -- [ Pg.125 , Pg.126 , Pg.127 , Pg.128 , Pg.129 , Pg.130 ]




SEARCH



Aluminum particles

© 2024 chempedia.info