Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dump combustor

Recirculation of combustion products can be obtained by several means (1) by inserting solid obstacles in the stream, as in ramjet technology (bluff-body stabilization) (2) by directing part of the flow or one of the flow constituents, usually air, opposed or normal to the main stream, as in gas turbine combustion chambers (aerodynamic stabilization), or (3) by using a step in the wall enclosure (step stabilization), as in the so-called dump combustors. These modes of stabilization are depicted in Fig. 4.52. Complete reviews of flame stabilization of premixed turbulent gases appear in Refs. [66, 67],... [Pg.241]

In either case, bluff body or aerodynamic, blowout is the primary concern. In ramjets, the smallest frontal dimension for the highest flow velocity to be used is desirable in turbojets, it is the smallest volume of the primary recirculation zone that is of concern and in dump combustors, it is the least severe step. [Pg.244]

Combustion of aluminum particle as fuel, and oxygen, air, or steam as oxidant provides an attractive propulsion strategy. In addition to hydrocarbon fuel combustion, research is focussed on determining the particle size and distribution and other relevant parameters for effectively combusting aluminum/oxygen and aluminum/steam in a laboratory-scale atmospheric dump combustor by John Foote at Engineering Research and Consulting, Inc. (Chapter 8). A Monte-Carlo numerical scheme was utilized to estimate the radiant heat loss rates from the combustion products, based on the measured radiation intensities and combustion temperatures. These results provide some of the basic information needed for realistic aluminum combustor development for underwater propulsion. [Pg.5]

The geometry of the ramjet system simulated is shown in Fig. 7.1, which consists of a cylindrical inlet connected to a central dump combustor that has an exhaust nozzle. This specific geometry was chosen because extensive studies have been made in the past of the interaction between acoustics, vorticity dynamics, and chemical energy release in this system [17-20]. These earlier gas-phase flow studies are very helpful in interpreting the current multiphase flow simulations. [Pg.113]

The flow into the central dump combustor is computed by solving the compressible, time-dependent, conservation equations for mass, momentum, and energy using the Flux-Corrected Transport (FCT) algorithm [21], a conservative, monotonic algorithm with fourth-order phase accuracy. No explicit term representing physical viscosity is included in the model. [Pg.113]

Results of an experimental program in which aluminum particles were burned with steam and mixtures of oxygen and argon in small-scale atmospheric dump combustor are presented. Measurements of combustion temperature, radiation intensity in the wavelength interval from 400 to 800 nm, and combustion products particle size distribution and composition were made. A combustion temperature of about 2900 K was measured for combustion of aluminum particles with a mixture of 20%(wt.) O2 and 80%(wt.) Ar, while a combustion temperature of about 2500 K was measured for combustion of aluminum particles with steam. Combustion efficiency for aluminum particles with a mean size of 17 yum burned in steam with O/F) / 0/F)st 1-10 and with residence time after ignition estimated at 22 ms was about 95%. A Monte Carlo numerical method was used to estimate the radiant heat loss rates from the combustion products, based on the measured radiation intensities and combustion temperatures. A peak heat loss rate of 9.5 W/cm was calculated for the 02/Ar oxidizer case, while a peak heat loss rate of 4.8 W/cm was calculated for the H2O oxidizer case. [Pg.127]

The goal of the present study is to provide the information needed for design of a practical underwater propulsion system utilizing powdered aluminum burned with steam. Experiments are being conducted in atmospheric pressure dump combustors using argon/oxygen mixtures and steam as oxidizers. Spectrometer measurements have been made to estimate combustion temperatures and radiant heat transfer rates, and samples of combustion products have been collected to determine the composition and particle size distribution of the products. [Pg.128]

Measurements of combustion temperatures, radiation intensity distributions in the range from 400 to 800 nm, and particle size distributions of combustion products have been made for the reaction of aluminum powder with both 02/Ar and H2O oxidizers in atmospheric dump combustors. The fraction of unburned aluminum in the combustion products was also determined for the H2O oxidizer case. An analytical study was performed to determine if the measurements are consistent with each other and with theory, and also to estimate the rate of heat loss from the combustion products. A Monte Carlo technique was used to determine the expected spectral energy distribution that would be emitted from a viewport located in the side of a combustion chamber containing products of aluminum combustion. [Pg.137]

In this study, measurements of the combustion temperature, radiation intensity, combustion products particle size distribution, and combustion efficiency have been made for combustion of aluminum particles with steam in a small-scale atmospheric dump combustor. This data will be useful for designers of combustion chambers for burning of aluminum powder with steam. [Pg.139]

Sivasegaram, S., and J. H. Whitelaw. 1987. Combustion oscillations in dump combustors with a constricted exit. Institute of Mechanical Engineers Proceedings 202(C3) 205-10. [Pg.313]

Schadow, K.C., E. Gutmark, and K. J. Wilson. 1992. Active combustion control in a coaxial dump combustor. Combustion Science Technology 81 285-300. [Pg.331]

To demonstrate liquid-fueled active combustion control, instability suppression experiments were performed under several conditions. Figure 21.6 shows the dump combustor set-up used in the demonstration experiments. Three configurations in which naturally unstable oscillations were observed are shown. Table 21.1 lists the specific flow conditions where instabilities occurred. The case number in the table corresponds to the combustor configuration used. [Pg.340]

Model ramjet dump combustor with direct liquid-fuel injection for... [Pg.341]

The present study was conducted in an effort to better understand ACC mechanisms and to design practical ACC based on pulsed liquid-fuel injection suitable for propulsion devices. The controller utilized a simple fixed phase-delay approach that has been studied previously, but the direct liquid-fuel injection and the novel use of vortex-droplet interaction made the present study unique. The demonstration experiment in a 102-millimeter dump combustor showed that combustion instabilities can be successfully suppressed using properly designed pulsed liquid-fuel injection. [Pg.349]

Wilson, K. J., E. Gutmark, K.C. Schadow, and R. A. Smith. 1991. Active control of a dump combustor with fuel modulation. AIAA Paper No. 91-0368. [Pg.350]

Network back propagation Generic combustion instability [15] Dump combustor [16] Boiler combustion systems [17] 2. Has similar algorithm in System ID 3. May be replaced by off-line ID plus Bode-Nyquist or observer-based controller... [Pg.356]

As a specific example to study the characteristics of the controller, the problem involving four modes of longitudinal oscillations is considered herein. The natural radian frequency of the fundamental mode, normalized with respect to 7ra/L, is taken to be unity. The nominal linear parameters Dni and Eni in Eq. (22.12) are taken from [1], representing a typical situation encountered in several practical combustion chambers. An integrated research project comprising laser-based experimental diagnostics and comprehensive numerical simulation is currently conducted to provide direct insight into the combustion dynamics in a laboratory dump combustor [27]. Included as part of the results are the system and actuator parameters under feedback actions, which can... [Pg.366]

A comprehensive framework of robust feedback control of combustion instabilities in propulsion systems has been established. The model appears to be the most complete of its kind to date, and accommodates various unique phenomena commonly observed in practical combustion devices. Several important aspects of distributed control process (including time delay, plant disturbance, sensor noise, model uncertainty, and performance specification) are treated systematically, with emphasis placed on the optimization of control robustness and system performance. In addition, a robust observer is established to estimate the instantaneous plant dynamics and consequently to determine control gains. Implementation of the controller in a generic dump combustor has been successfully demonstrated. [Pg.368]


See other pages where Dump combustor is mentioned: [Pg.250]    [Pg.10]    [Pg.10]    [Pg.129]    [Pg.315]    [Pg.333]    [Pg.337]    [Pg.338]    [Pg.353]    [Pg.355]    [Pg.37]    [Pg.37]    [Pg.156]    [Pg.342]    [Pg.360]    [Pg.364]    [Pg.365]   
See also in sourсe #XX -- [ Pg.505 ]

See also in sourсe #XX -- [ Pg.505 ]




SEARCH



Combustor

Combustors

DUMP

Dumping

© 2024 chempedia.info