Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methacrylate alkyl

AlkyUithium compounds are primarily used as initiators for polymerizations of styrenes and dienes (52). These initiators are too reactive for alkyl methacrylates and vinylpyridines. / -ButyUithium [109-72-8] is used commercially to initiate anionic homopolymerization and copolymerization of butadiene, isoprene, and styrene with linear and branched stmctures. Because of the high degree of association (hexameric), -butyIUthium-initiated polymerizations are often effected at elevated temperatures (>50° C) to increase the rate of initiation relative to propagation and thus to obtain polymers with narrower molecular weight distributions (53). Hydrocarbon solutions of this initiator are quite stable at room temperature for extended periods of time the rate of decomposition per month is 0.06% at 20°C (39). [Pg.239]

Enolate Initiators. In principle, ester enolate anions should represent the ideal initiators for anionic polymeri2ation of alkyl methacrylates. Although general procedures have been developed for the preparation of a variety of alkaU metal enolate salts, many of these compounds are unstable except at low temperatures (67,102,103). Usehil initiating systems for acrylate polymeri2ation have been prepared from complexes of ester enolates with alkak metal alkoxides (104,105). [Pg.240]

Fig. 13. Thickening of lOW base stock to multigraded oil with polymer additives. A, high mol wt poly(alkyl methacrylate) B, low mol wt poly(aLkyl... Fig. 13. Thickening of lOW base stock to multigraded oil with polymer additives. A, high mol wt poly(alkyl methacrylate) B, low mol wt poly(aLkyl...
Selected physical properties of various methacrylate esters, amides, and derivatives are given in Tables 1—4. Tables 3 and 4 describe more commercially available methacrylic acid derivatives. A2eotrope data for MMA are shown in Table 5 (8). The solubiUty of MMA in water at 25°C is 1.5%. Water solubiUty of longer alkyl methacrylates ranges from slight to insoluble. Some functionalized esters such as 2-dimethylaniinoethyl methacrylate are miscible and/or hydrolyze. The solubiUty of 2-hydroxypropyl methacrylate in water at 25°C is 13%. Vapor—Hquid equiUbrium (VLE) data have been pubHshed on methanol, methyl methacrylate, and methacrylic acid pairs (9), as have solubiUty data for this ternary system (10). VLE data are also available for methyl methacrylate, methacrylic acid, methyl a-hydroxyisobutyrate, methanol, and water, which are the critical components obtained in the commercially important acetone cyanohydrin route to methyl methacrylate (11). [Pg.242]

Most large-scale industrial methacrylate processes are designed to produce methyl methacrylate or methacryhc acid. In some instances, simple alkyl alcohols, eg, ethanol, butanol, and isobutyl alcohol, maybe substituted for methanol to yield the higher alkyl methacrylates. In practice, these higher alkyl methacrylates are usually prepared from methacryhc acid by direct esterification or transesterification of methyl methacrylate with the desired alcohol. [Pg.247]

A review covers the preparation and properties of both MABS and MBS polymers (75). Literature is available on the grafting of methacrylates onto a wide variety of other substrates (76,77). Typical examples include the grafting of methyl methacrylate onto mbbers by a variety of methods chemical (78,79), photochemical (80), radiation (80,81), and mastication (82). Methyl methacrylate has been grafted onto such substrates as cellulose (83), poly(vinyl alcohol) (84), polyester fibers (85), polyethylene (86), poly(styrene) (87), poly(vinyl chloride) (88), and other alkyl methacrylates (89). [Pg.269]

Photopolymerizable compositions based on monomeric acryflc or other ethylenicaHy unsaturated acid derivatives are becoming increasingly popular. When multiftmctional derivatives are employed, three-dimensional networks having high strength and abrasion resistance are possible on exposure to light. A typical composition may contain an ethoxylated trimethylolpropane triacrylate monomer, a perester phenacjhdene initiator (69), and an acryflc acid—alkyl methacrylate copolymer as binder. [Pg.44]

Mechanical properties of a hydrogel lens also are affected by the use of a hydrophobic monomer, such as a low alkyl methacrylate. This is particularly important when the water content of the hydrogel lens is very high. The use of these methacrylates helps preserve the required mechanical strength. Methyl methacrylate [80-62-6] (MMA) (I2I), isobutyl methacrylate [97-86-9] (122), and / -pentyl methacrylate [2849-98-1] (123) all have been used for this purpose. [Pg.104]

A number of higher n-alkyl methacrylate polymers have found commercial usage. The poly-(n-butyl-), poly-(n-octyl-) and poly-(n-nonyl methacrylate)s have found use as leathering finishes whilst polyflauryl methacrylate) has become useful as a pour-point depressant and improver of viscosity temperature characteristics of lubricating oils. [Pg.421]

A large number of organic acrylic ester polymer have been prepared in the laboratory. Poly (methyl acrylate) is tough, leathery and flexible. With increase in chain length there is a drop in the brittle point but this reaches a minimum with poly-(n-octyl acrylate) (see Figure 15.12.). The increase in brittle point with the higher acrylates, which is similar to that observed with the poly-a-olefins and the poly(alkyl methacrylate)s, is due to side-chain crystallisation. [Pg.423]

The free radical initiators are more suitable for the monomers having electron-withdrawing substituents directed to the ethylene nucleus. The monomers having electron-supplying groups can be polymerized better with the ionic initiators. The water solubility of the monomer is another important consideration. Highly water-soluble (relatively polar) monomers are not suitable for the emulsion polymerization process since most of the monomer polymerizes within the continuous medium, The detailed emulsion polymerization procedures for various monomers, including styrene [59-64], butadiene [61,63,64], vinyl acetate [62,64], vinyl chloride [62,64,65], alkyl acrylates [61-63,65], alkyl methacrylates [62,64], chloroprene [63], and isoprene [61,63] are available in the literature. [Pg.198]

Table 8.2 Effect of Solvent on Tacticity of Poly(alkyl methacrylate) at -40 °C94... Table 8.2 Effect of Solvent on Tacticity of Poly(alkyl methacrylate) at -40 °C94...
Alkyl methacrylates Alkyl= Methyl (MMA) n-butyl, t-butyl (BuMA) Octyl Lauryl Octadecyl Phenyl Dimethylaminoethyl... [Pg.149]

Poly (alkyl methacrylate) macromonomers are formed by reaction of the living polymer with VBC. This method was shown to be free of side reactions and quantitative, in spite of the low nucleophilicity of the carbanionic site involved 72,75). [Pg.158]

Dewatering surfactants can be polyoxyethylene, polyoxypropylene, and polyethylene carbonates [1348] or p-tert-amylphenol condensed with formaldehyde, or they can be composed of a copolymer from 80% to 100% alkyl methacrylate monomers and hydrophilic monomers [777]. Such a well treatment fluid may be used in both fracturing and competition operations to enhance and maintain fracture conductivity over an extended period of production. [Pg.268]

We have demonstrated a new class of effective, recoverable thermormorphic CCT catalysts capable of producing colorless methacrylate oligomers with narrow polydispersity and low molecular weight. For controlled radical polymerization of simple alkyl methacrylates, the use of multiple polyethylene tails of moderate molecular weight (700 Da) gave the best balance of color control and catalyst activity. Porphyrin-derived thermomorphic catalysts met the criteria of easy separation from product resin and low catalyst loss per batch, but were too expensive for commercial implementation. However, the polyethylene-supported cobalt phthalocyanine complex is more economically viable due to its greater ease of synthesis. [Pg.327]

Mori, S., Separation and detection of styrene-alkyl methacrylate and ethyl methacrylate-butyl methacrylate copolymers by liquid adsorption chromatography using a dichloroethane mobile phase and a UV detector, J. Chromatogr., 541, 375, 1991. [Pg.368]

Free radical copolymerizations of the alkyl methacrylates were carried out in toluene at 60°C with 0.1 weight percent (based on monomer) AIBN initiator, while the styrenic systems were polymerized in cyclohexane. The solvent choices were primarily based on systems which would be homogeneous but also show low chain transfer constants. Methacrylate polymerizations were carried out at 20 weight percent solids... [Pg.87]

By employing anionic techniques, alkyl methacrylate containing block copolymer systems have been synthesized with controlled compositions, predictable molecular weights and narrow molecular weight distributions. Subsequent hydrolysis of the ester functionality to the metal carboxylate or carboxylic acid can be achieved either by potassium superoxide or the acid catalyzed hydrolysis of t-butyl methacrylate blocks. The presence of acid and ion groups has a profound effect on the solution and bulk mechanical behavior of the derived systems. The synthesis and characterization of various substituted styrene and all-acrylic block copolymer precursors with alkyl methacrylates will be discussed. [Pg.258]

The alkyl methacrylate monomers were available from various sources. Isobutyl methacrylate (IBMA) (Rohm and Haas) and t-butyl methacrylate (TBMA) (Rohm Tech) may be purified first by distillation from CaH, followed by distillation from trialkyl aluminum reagents as described in detail earlier (20,21). In particular, t-butyl methacrylate (b.pt. 150°C) was successfully purified by distillation, from triethyl aluminum containing small amounts of diisobutyl aluminum hydride. The trialkyl aluminum and dialkyl aluminum hydride reagents were obtained from the Ethyl Corporation as 25 weight percent solutions in hexane. The initiator, -butyllithium, was obtained from the Lithco Division of FMC, and analyzed by the Gilman "double titration" (22). [Pg.261]

Various substituted styrene-alkyl methacrylate block copolymers and all-acrylic block copolymers have been synthesized in a controlled fashion demonstrating predictable molecular weight and narrow molecular weight distributions. Table I depicts various poly (t-butylstyrene)-b-poly(t-butyl methacrylate) (PTBS-PTBMA) and poly(methyl methacrylate)-b-poly(t-butyl methacrylate) (PMMA-PTBMA) samples. In addition, all-acrylic block copolymers based on poly(2-ethylhexyl methacrylate)-b-poly(t-butyl methacrylate) have been recently synthesized and offer many unique possibilities due to the low glass transition temperature of PEHMA. In most cases, a range of 5-25 wt.% of alkyl methacrylate was incorporated into the block copolymer. This composition not only facilitated solubility during subsequent hydrolysis but also limited the maximum level of derived ionic functionality. [Pg.264]

Although the potassium superoxide route can be universally applied to various alkyl methacrylates, it is experimentally more difficult than simple acid hydrolysis. In addition, limited yields do not permit well-defined hydrophobic-hydrophilic blocks. On the other hand, acid catalyzed hydrolysis is limited to only a few esters such as TBMA, but yields of carboxylate are quantitative. Hydrolysis attempts of poly(methyl methacrylate) (PMMA) and poly(isopropyl methacrylate) (PIPMA) do not yield an observable amount of conversion to the carboxylic acid under the established conditions for poly(t-butyl methacrylate) (PTBMA). This allows for selective hydrolysis of all-acrylic block copolymers. [Pg.270]


See other pages where Methacrylate alkyl is mentioned: [Pg.389]    [Pg.236]    [Pg.240]    [Pg.240]    [Pg.242]    [Pg.248]    [Pg.266]    [Pg.269]    [Pg.442]    [Pg.421]    [Pg.321]    [Pg.321]    [Pg.154]    [Pg.165]    [Pg.165]    [Pg.165]    [Pg.597]    [Pg.175]    [Pg.259]    [Pg.259]    [Pg.261]    [Pg.263]    [Pg.263]    [Pg.265]    [Pg.265]    [Pg.267]   
See also in sourсe #XX -- [ Pg.383 , Pg.387 , Pg.389 , Pg.392 ]

See also in sourсe #XX -- [ Pg.345 ]




SEARCH



ALKYL METHACRYLATE COPOLYMER

Alkyl methacrylates

Alkyl methacrylates

Alkyl methacrylates copolymers

Alkyl methacrylates glass transitions

Alkyl methacrylates physical properties

Alkyl methacrylates, controlled/living anionic

Alkyl methacrylates, controlled/living anionic polymerization

Alkyl methacrylates, hydrolysis

Branched alkyl methacrylate monomers

Copolymerization of PEO Macromonomers with Alkyl Acrylates and Methacrylates

Copolymers, block alkyl methacrylates

Hydroxy alkyl methacrylate

Methacrylate higher alkyl

Methacrylate polymers containing alkyl groups

Methacrylates, alkyl anionic polymerization

Methacrylates, alkyl group transfer polymerization

Methacrylates, alkyl initiators

Methacrylates, alkyl living anionic polymerization

Poly alkyl methacrylates

Poly(Alkyl Methacrylate) Macromonomers

Poly-n-alkyl methacrylates

Terpolymers alkyl methacrylates

© 2024 chempedia.info