Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

ALKYL METHACRYLATE COPOLYMER

Photopolymerizable compositions based on monomeric acryflc or other ethylenicaHy unsaturated acid derivatives are becoming increasingly popular. When multiftmctional derivatives are employed, three-dimensional networks having high strength and abrasion resistance are possible on exposure to light. A typical composition may contain an ethoxylated trimethylolpropane triacrylate monomer, a perester phenacjhdene initiator (69), and an acryflc acid—alkyl methacrylate copolymer as binder. [Pg.44]

The formulation for Impet from Ticona (a Division of the Hoechst Celanese Corporation) is described in United States Patent 6 020414 [43], The latter discloses toughened PET formulations based on an ethylene-alkyl acrylate copolymer and an ethylene-alkyl methacrylate copolymer. The crux of this patent is to use a combination of an elastomeric terpolymer functionalized with glycidyl acrylate or glycidyl methacrylate and an alkyl acrylate or alkyl methacrylate (the latter forming the major part of the combination - up to 40wt%). For instance,... [Pg.533]

Pioneering work from Hatada and co-workers [8] has illustrated the molecular weight dependence of the chemical composition of block and random (alkyl) methacrylate copolymers, for example ... [Pg.308]

Poly(alkyl methacrylate) copolymer of -8,000 amu, canola oil carrier 1 1. [Pg.3249]

Brisaert M, Plaizier-Vercammen. Investigation of the emulsifying properties of Pemulen TR 1, an acrylic acid alkyl methacrylate copolymer. STP Pharma Sciences 1997 7 438-444. [Pg.440]

Chem. Descrip. Cycle alkyl methacrylate copolymer (50%) in PermethyF 99AD (isododecane)... [Pg.380]

The foUowing activity coefficients and interaction parameters determined by GLC for solute-statistical copolymers may be found in the literature (a) forty three non-polar and polar solutes on ethylene-vinyl acetate copolymer with 29% weight of vinyl acetate at 150.6 and 160.5°C [105] chloroform, carbon tetrachloride, butyl alcohol, butyl chloride, cyclohexanol, cyclohexane, phenol, chlorobenzene and pentanone-2 on the same copolymer with 18% weight vinyl acetate at 135°0 [102], normal xdkanes (C5, Oj, Og, Ojo), oct-l-ene, chlorinated derivatives, n-butanol, toluene, benzene, methyl-propyl-ketone and n-butyl-cyclohexane on the copolymer mentioned with 40% weight vinyl acetate at 65, 75 and 85°0 [68, 106] (b) n-nonane, benzene, chloroform, methyl-ethyl-ketone and ethanol in methyl methacrylate-butyl methacrylate copolymer with 10% butyl methacrylate [32] (c) hydrocarbons in styrene-alkyl methacrylates copolymers at 140°C [101] (d) the solutes in (b) on butadiene-acrylonitrile copolymer with 34% weight acrylonitrile [68]. [Pg.146]

A variety of studies have been made on copolym of styrene. They include the kinetics of degradation of styrene-alkyl methacrylate copolymers the effect... [Pg.385]

Yoshida, T., Kurimoto, I., Yoshihara, K., Umejima, H., Ito, N., Watanabe, S., et al. (2012). Amino-alkyl methacrylate copolymers for improving the solubihty of tacroUmus I evaluation of solid dispersion formulations. International Journal of Pharmaceutics, 428(1-2), 18-24. [Pg.258]

Dewatering surfactants can be polyoxyethylene, polyoxypropylene, and polyethylene carbonates [1348] or p-tert-amylphenol condensed with formaldehyde, or they can be composed of a copolymer from 80% to 100% alkyl methacrylate monomers and hydrophilic monomers [777]. Such a well treatment fluid may be used in both fracturing and competition operations to enhance and maintain fracture conductivity over an extended period of production. [Pg.268]

Mori, S., Separation and detection of styrene-alkyl methacrylate and ethyl methacrylate-butyl methacrylate copolymers by liquid adsorption chromatography using a dichloroethane mobile phase and a UV detector, J. Chromatogr., 541, 375, 1991. [Pg.368]

By employing anionic techniques, alkyl methacrylate containing block copolymer systems have been synthesized with controlled compositions, predictable molecular weights and narrow molecular weight distributions. Subsequent hydrolysis of the ester functionality to the metal carboxylate or carboxylic acid can be achieved either by potassium superoxide or the acid catalyzed hydrolysis of t-butyl methacrylate blocks. The presence of acid and ion groups has a profound effect on the solution and bulk mechanical behavior of the derived systems. The synthesis and characterization of various substituted styrene and all-acrylic block copolymer precursors with alkyl methacrylates will be discussed. [Pg.258]

Various substituted styrene-alkyl methacrylate block copolymers and all-acrylic block copolymers have been synthesized in a controlled fashion demonstrating predictable molecular weight and narrow molecular weight distributions. Table I depicts various poly (t-butylstyrene)-b-poly(t-butyl methacrylate) (PTBS-PTBMA) and poly(methyl methacrylate)-b-poly(t-butyl methacrylate) (PMMA-PTBMA) samples. In addition, all-acrylic block copolymers based on poly(2-ethylhexyl methacrylate)-b-poly(t-butyl methacrylate) have been recently synthesized and offer many unique possibilities due to the low glass transition temperature of PEHMA. In most cases, a range of 5-25 wt.% of alkyl methacrylate was incorporated into the block copolymer. This composition not only facilitated solubility during subsequent hydrolysis but also limited the maximum level of derived ionic functionality. [Pg.264]

Although the potassium superoxide route can be universally applied to various alkyl methacrylates, it is experimentally more difficult than simple acid hydrolysis. In addition, limited yields do not permit well-defined hydrophobic-hydrophilic blocks. On the other hand, acid catalyzed hydrolysis is limited to only a few esters such as TBMA, but yields of carboxylate are quantitative. Hydrolysis attempts of poly(methyl methacrylate) (PMMA) and poly(isopropyl methacrylate) (PIPMA) do not yield an observable amount of conversion to the carboxylic acid under the established conditions for poly(t-butyl methacrylate) (PTBMA). This allows for selective hydrolysis of all-acrylic block copolymers. [Pg.270]

Brown and White employed this approach to prepare block copolymers of styrene and mcthacrylic acid (6). They were able to hydrolyze poly(styrene-b-methyl methacrylate) (S-b-MM) with p-toluenesulfonic acid (TsOH). Allen, et al., have recently reported acidic hydrolysis of poly(styrene-b-t-butyl methacrylate) (S-b-tBM) (7-10). These same workers have also prepared potassium methacrylate blocks directly by treating blocks of alkyl methacrylates with potassium superoxide (7-10). [Pg.277]

Our requirements for certain applications called for the preparation of block copolymers of styrene and alkali metal methacrylates with molecular weights of about 20,000 and methacrylate contents of about 10 mol%. In this report we describe the preparation and reactions of S-b-MM and S-b-tBM. In the course of our investigation, we have found several new methods for the conversion of alkyl methacrylate blocks into methacrylic acid and/or metal methacrylate blocks. Of particular interest is the reaction with trimethylsilyl iodide. Under the same mild conditions, MM blocks are completely unreactive, while tBM blocks are cleanly converted to either methacrylic acid or metal methacrylate blocks. As a consequence of this unexpected selectivity, we also report the preparation of the new block copolymers, poly(methyl methacrylate-b-potassium methacrylate) (MM-b-MA.K) and poly(methyl methacrvlate-b-methacrylic acid) (MM-b-MA). [Pg.277]

We also explored the direct conversion of S-b-tBM to S-b-MA.K. Hydrolysis under basic conditions (KOH in refluxing aqueous THF) was again resulted in unchanged S-b-tBM. The reaction with potassium trimethylsilanolate for 1 hr in refluxing toluene gave very little reaction. Only 10% of the expected amount of potassium was found by ICP, and the NMR and IR spectra were little changed from those of the starting copolymer. This difference in reactivity between S-b-MM and S-b-tBM parallels that observed for the reaction of alkyl methacrylate blocks with potassium superoxide (7-10). [Pg.288]

Block copolymerization was carried out in the bulk polymerization of St using 18 as the polymeric iniferter. The block copolymer was isolated with 63-72 % yield by solvent extraction. In contrast with the polymerization of MMA with 6, the St polymerization with 18 as the polymeric iniferter does not proceed via the livingradical polymerization mechanism,because the co-chain end of the block copolymer 19 in Eq. (22) has the penta-substituted ethane structure, of which the C-C bond will dissociate less frequently than the C-C bond of hexa-substituted ethanes, e.g., the co-chain end of 18. This result agrees with the fact that the polymerization of St with 6 does not proceed through a living radical polymerization mechanism. Therefore, 18 is suitably used for the block copolymerization of 1,1-diubstituted ethylenes such as methacrylonitrile and alkyl methacrylates [83]. [Pg.87]

Since the hydrophobicity of styrene- or alkyl methacrylate-based monolithic matrices is too high to make them useful for hydrophobic interaction chromatography, porous monoliths based on highly hydrophilic copolymers of acrylamide and methylenebisacrylamide were developed [70,135]. The hydrophobicity of the matrix required for the successful separations of proteins is controlled by the addition of butyl methacrylate to the polymerization mixture. The suitability of this rigid hydrophilic monolith for the separation of protein mixtures is demonstrated in Fig. 21, which shows the rapid separation of five proteins in less than 3 min using a steeply decreasing concentration gradient of ammonium sulfate. [Pg.120]

Spijker and colleagues (2005) synthesized nucleobase-functionalized block copolymers containing thymine via ATRP of a thymine methacrylate monomer from a poly(ethylene glycol) (PEG) macroinitiator. This polymer was introduced into the polymerization of an adenine containing an alkyl methacrylate... [Pg.77]


See other pages where ALKYL METHACRYLATE COPOLYMER is mentioned: [Pg.115]    [Pg.115]    [Pg.389]    [Pg.266]    [Pg.442]    [Pg.597]    [Pg.175]    [Pg.259]    [Pg.259]    [Pg.263]    [Pg.265]    [Pg.265]    [Pg.272]    [Pg.276]    [Pg.68]    [Pg.192]    [Pg.273]    [Pg.190]    [Pg.29]    [Pg.149]    [Pg.147]    [Pg.153]    [Pg.158]    [Pg.42]    [Pg.42]    [Pg.233]   


SEARCH



Alkyl methacrylate

Alkyl methacrylates

Alkyl methacrylates copolymers

Copolymer methacrylate

Copolymers methacrylic

Copolymers, block alkyl methacrylates

© 2024 chempedia.info