Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methacrylates Processes

Most large-scale industrial methacrylate processes are designed to produce methyl methacrylate or methacryhc acid. In some instances, simple alkyl alcohols, eg, ethanol, butanol, and isobutyl alcohol, maybe substituted for methanol to yield the higher alkyl methacrylates. In practice, these higher alkyl methacrylates are usually prepared from methacryhc acid by direct esterification or transesterification of methyl methacrylate with the desired alcohol. [Pg.247]

TABLE 3 Evaluation of Alternate Methyl Methacrylate Processes Using the Edwards et al. Proposed Inherent Safety Index... [Pg.498]

Elements of the existing formamide process are included in a methyl methacrylate process that Mitsubishi Gas Chemical started up in 1997. The formamide is obtained by reacting hydroxyisobutyramide with methyl formate. Therefore the external requirements for HCN are reduced to the replacement of yield losses131. The process is described in US patent 6,075,162 and the catalyst is described in European patent 1,086,744. [Pg.356]

Trimethylol propane tri methacrylate processing aid, e drusion/molding of rubber... [Pg.5574]

Multilayer butadiene-styrene- divinylbenzene-butylacrylate-methyl methacrylate Processability and high impact resistance Usami and Ochiai 1976... [Pg.46]

Combination and disproportionation are competitive processes and do not occur to the same extent for all polymers. For example, at 60°C termination is virtually 100% by combination for polyacrylonitrile and 100% by disproportionation for poly (vinyl acetate). For polystyrene and poly (methyl methacrylate), both reactions contribute to termination, although each in different proportions. Each of the rate constants for termination individually follows the Arrhenius equation, so the relative amounts of termination by the two modes is given by... [Pg.360]

Processes have been developed whereby the oxygen is suppHed from the crystal lattice of a metal-oxide catalyst (5) (see Acrylonitrile Methacrylic acid AND derivatives). [Pg.217]

Compounds with active hydrogen add to the carbonyl group of acetone, often followed by the condensation of another molecule of the addend or loss of water. Hydrogen sulfide forms hexamethyl-l,3,5-trithiane probably through the transitory intermediate thioacetone which readily trimerizes. Hydrogen cyanide forms acetone cyanohydrin [75-86-5] (CH2)2C(OH)CN, which is further processed to methacrylates. Ammonia and hydrogen cyanide give (CH2)2C(NH2)CN [19355-69-2] ix.orn. 6<55i the widely used polymerization initiator, azobisisobutyronitrile [78-67-1] is made (4). [Pg.93]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

Acrylate and methacrylate polymerizations are accompanied by the Hberation of a considerable amount of heat and a substantial decrease in volume. Both of these factors strongly influence most manufacturing processes. Excess heat must be dissipated to avoid uncontrolled exothermic polymerizations. In general, the percentage of shrinkage decreases as the size of the alcohol substituent increases on a molar basis, the shrinkage is relatively constant (77). [Pg.165]

Numerous recipes have been pubUshed, primarily ia the patent Hterature, that describe the preparation of acrylate and methacrylate homopolymer and copolymer dispersions (107,108). A typical process for the preparation of a 50% methyl methacrylate, 49% butyl acrylate, and 1% methacrylic acid terpolymer as an approximately 45% dispersion ia water begias with the foUowiag charges ... [Pg.169]

Fig. 26. Qualitative compatison of substrate materials for optical disks (187) An = birefringence IS = impact strength BM = bending modulus HDT = heat distortion temperature Met = metallizability WA = water absorption Proc = processibility. The materials are bisphenol A—polycarbonate (BPA-PC), copolymer (20 80) of BPA-PC and trimethylcyclohexane—polycarbonate (TMC-PC), poly(methyl methacrylate) (PMMA), uv-curable cross-linked polymer (uv-DM), cycHc polyolefins (CPO), and, for comparison, glass. Fig. 26. Qualitative compatison of substrate materials for optical disks (187) An = birefringence IS = impact strength BM = bending modulus HDT = heat distortion temperature Met = metallizability WA = water absorption Proc = processibility. The materials are bisphenol A—polycarbonate (BPA-PC), copolymer (20 80) of BPA-PC and trimethylcyclohexane—polycarbonate (TMC-PC), poly(methyl methacrylate) (PMMA), uv-curable cross-linked polymer (uv-DM), cycHc polyolefins (CPO), and, for comparison, glass.
Wea.kA.cid Cation Exchangers. The syathesis of weak acid catioa exchangers is a one-step process when acryHc acid or methacrylic acid is copolymetized with DVB. If an acryHc ester is used as the monomer iastead of an acryHc acid, the ester groups must be hydrolyzed after polymerization usiag either an acid or base (NaOH) to give the carboxyHc acid functionaHty, or the sodium salt (4) of it. [Pg.374]

During processing at elevated temperatures, normal precautions are needed to prevent accidental bums. Sudyn ionomers have U.S. Food and Dmg Administration clearance for food contact. Information about ionomers can be found in the articles Ethylene Acrylic acid and derivatives and Methacrylic acid and derivatives. [Pg.408]

A third source of initiator for emulsion polymerisation is hydroxyl radicals created by y-radiation of water. A review of radiation-induced emulsion polymerisation detailed efforts to use y-radiation to produce styrene, acrylonitrile, methyl methacrylate, and other similar polymers (60). The economics of y-radiation processes are claimed to compare favorably with conventional techniques although worldwide iadustrial appHcation of y-radiation processes has yet to occur. Use of y-radiation has been made for laboratory study because radical generation can be turned on and off quickly and at various rates (61). [Pg.26]

Until 1982, almost all methyl methacrylate produced woddwide was derived from the acetone cyanohydrin (C-3) process. In 1982, Nippon Shokubai Kagaku Kogyo Company introduced an isobutylene-based (C-4) process, which was quickly followed by Mitsubishi Rayon Company in 1983 (66). Japan Methacryhc Monomer Company, a joint venture of Nippon Shokubai and Sumitomo Chemical Company, introduced a C-4-based plant in 1984 (67). Isobutylene processes are less economically attractive in the United States where isobutylene finds use in the synthesis of methyl /i / butyl ether, a pollution-reducing gasoline additive. BASF began operation of an ethylene-based (C-2) plant in Ludwigshafen, Germany, in 1990, but favorable economics appear to be limited to conditions unique to that site. [Pg.250]

The methyl a-hydroxyisobutyrate produced is dehydrated to MMA and water in two stages. First, the methyl a-hydroxyisobutyrate is vaporized and passed over a modified zeoHte catalyst at ca 240°C. A second reactor containing phosphoric acid is operated at ca 150°C to promote esterification of any methacrylic acid (MAA) formed in the first reactor (74,75). Methanol is co-fed to improve selectivity in each stage. Conversions of methyl a-hydroxyisobutyrate are greater than 99%, with selectivities to MMA near 96%. The reactor effluent is extracted with water to remove methanol and yield cmde MMA. This process has not yet been used on a commercial scale. [Pg.252]

Isobutjiene [115-11-7] or tert-huty alcohol can be converted to methacrylic acid in a two-stage, gas-phase oxidation process via methacrolein as an intermediate. The alcohol and isobutjiene may be used interchangeably in the processes since tert-huty alcohol [75-65-0] readily dehydrates to yield isobutjiene under the reaction conditions in the initial oxidation. Variations of this process have been commercialized by Mitsubishi Rayon and by a joint venture of Sumitomo and Nippon Shokubai. Nippon Kayaku, Mitsui Toatsu, and others have also been active in isobutjiene oxidation research. [Pg.253]

The first-stage catalysts for the oxidation to methacrolein are based on complex mixed metal oxides of molybdenum, bismuth, and iron, often with the addition of cobalt, nickel, antimony, tungsten, and an alkaU metal. Process optimization continues to be in the form of incremental improvements in catalyst yield and lifetime. Typically, a dilute stream, 5—10% of isobutylene tert-huty alcohol) in steam (10%) and air, is passed over the catalyst at 300—420°C. Conversion is often nearly quantitative, with selectivities to methacrolein ranging from 85% to better than 95% (114—118). Often there is accompanying selectivity to methacrylic acid of an additional 2—5%. A patent by Mitsui Toatsu Chemicals reports selectivity to methacrolein of better than 97% at conversions of 98.7% for a yield of methacrolein of nearly 96% (119). [Pg.253]

Several variations of the above process are practiced. In the Sumitomo-Nippon Shokubai process, the effluent from the first-stage reactor containing methacrolein and methacrylic acid is fed directiy to the second-stage oxidation without isolation or purification (125,126). In this process, overall yields are maximized by optimizing selectivity to methacrolein plus methacrylic acid in the first stage. Conversion of isobutjiene or tert-huty alcohol must be high because no recycling of material is possible. In another variation, Asahi Chemical has reported the oxidative esterification of methacrolein directiy to MMA in 80% yield without isolation of the intermediate MAA (127,128). [Pg.253]

Manufacture of Monomers. The various commercial processes for the manufacture of methyl methacrylate have been reviewed (31) (see... [Pg.263]

Free-radical polymerization processes are used to produce virtually all commercial methacrylic polymers. Usually free-radical initiators (qv) such as azo compounds or peroxides are used to initiate the polymerizations. Photochemical and radiation-initiated polymerizations are also well known. At a constant temperature, the initial rate of the bulk or solution radical polymerization of methacrylic monomers is first-order with respect to monomer concentration, and one-half order with respect to the initiator concentration. Rate data for polymerization of several common methacrylic monomers initiated with 2,2 -azobisisobutyronitrile [78-67-1] (AIBN) have been deterrnined and are shown in Table 8. [Pg.263]

The free-radical polymerization of methacrylic monomers follows a classical chain mechanism in which the chain-propagation step entails the head-to-taH growth of the polymeric free radical by attack on the double bond of the monomer. Chain termination can occur by either combination or disproportionation, depending on the conditions of the process (36). [Pg.263]


See other pages where Methacrylates Processes is mentioned: [Pg.9]    [Pg.988]    [Pg.145]    [Pg.268]    [Pg.5574]    [Pg.9]    [Pg.988]    [Pg.145]    [Pg.268]    [Pg.5574]    [Pg.2594]    [Pg.441]    [Pg.83]    [Pg.126]    [Pg.441]    [Pg.92]    [Pg.132]    [Pg.148]    [Pg.171]    [Pg.182]    [Pg.329]    [Pg.331]    [Pg.72]    [Pg.94]    [Pg.151]    [Pg.242]    [Pg.249]    [Pg.251]    [Pg.251]    [Pg.255]    [Pg.259]   
See also in sourсe #XX -- [ Pg.287 , Pg.288 , Pg.289 ]




SEARCH



© 2024 chempedia.info