Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interfacial tension alkaline flooding

In buffered surfactant-enhanced alkaline flooding, it was found that the minimum in interfacial tension and the region of spontaneous emulsification correspond to a particular pH range, so by buffering the aqueous pH against changes in alkali concentration, a low interfacial tension can be maintained when the amount of alkali decreases because of acids, rock consumption, and dispersion [1826]. [Pg.207]

Effect of Ca2. In many reservoirs the connate waters ontain substantial quantities of divalent ions (mostly Ca . In alkaline flooding applications at low temperatures, the presence of divalent ions leads to a drastic increase in tensions r35,36]. Kumar et al. f371 also found that Ca and Mg ions are detrimental to the interfacial tensions of sulfonate surfactant systems. Detailed studies at elevated temperatures appear to be non-existent. [Pg.340]

Micellar-polymer flooding and alkali-surfactant-polymer (ASP) flooding are discussed in terms of emulsion behavior and interfacial properties. Oil entrapment mechanisms are reviewed, followed by the role of capillary number in oil mobilization. Principles of micellar-polymer flooding such as phase behavior, solubilization parameter, salinity requirement diagrams, and process design are used to introduce the ASP process. The improvements in ""classicaV alkaline flooding that have resulted in the ASP process are discussed. The ASP process is then further examined by discussion of surfactant mixing rules, phase behavior, and dynamic interfacial tension. [Pg.263]

Alkaline flooding is an old concept, first patented by Atkinson (48) in 1927. Hydroxide ion in an alkaline solution reacts with acidic components present in some crude oils to produce petroleum soaps, which are generally sodium salts of carboxylic acids. These petroleum soaps are capable of adsorbing at the oil-water interface and lowering interfacial tension. Crude oils suitable... [Pg.280]

Surfactant Mixing Rules. The petroleum soaps produced in alkaline flooding have an extremely low optimal salinity. For instance, most acidic crude oils will have optimal phase behavior at a sodium hydroxide concentration of approximately 0.05 wt% in distilled water. At that concentration (about pH 12) essentially all of the acidic components in the oil have reacted, and type HI phase behavior occurs. An increase in sodium hydroxide concentration increases the ionic strength and is equivalent to an increase in salinity because more petroleum soap is not produced. As salinity increases, the petroleum soaps become much less soluble in the aqueous phase than in the oil phase, and a shift to over-optimum or type H(+) behavior occurs. The water in most oil reservoirs contains significant quantities of dissolved solids, resulting in increased IFT. Interfacial tension is also increased because high concentrations of alkali are required to counter the effect of losses due to alkali-rock interactions. [Pg.281]

A fundamental chemical process is surfactant flooding in which the key mechanism is to reduce interfacial tension (IFT) between oil and the displacing fluid. The mechanism, because of the reduced IFT, is associated with the increased capillary number, which is a dimensionless ratio of viscous-to-local capillary forces. Experimental data show that as the capillary number increases, the residual oil saturation decreases (Lake, 1989). Therefore, as IFT is reduced through the addition of surfactants, the ultimate oil recovery is increased. In alkaline flooding, the surfactant required to reduce IFT is generated in situ by the chemical reaction between injected alkali and naphthenic acids in the... [Pg.5]

Capillary number can be increased by increasing velocity or by lowering interfacial tension by snrfactant or alkaline flooding. From Table 7.8, it seems that there is no distinct difference in the magnitnde of critical capillary nnmber based on these different approaches. However, we should note that for most of the tests in Table 7.8 the capillary nnmber was increased by increasing flow velocity. [Pg.310]

Alkalis react with naphthenic acid in crude oil to generate soap. The soap, an in situ generated surfactant, reduces the interfacial tension between the alkaline solution and oil. It is intuitive to infer that the main mechanism in alkaline flooding is low IFT. [Pg.425]

At the concentrations of alkali above that required for minimum interfacial tension, the systems become overoptimum. The excess alkali plays the same role as excess salt. When synthetic surfactants are added, the salinity requirement of alkaline flooding system is increased. NEODOL 25-3S is such a synthetic surfactant used by Nelson et al. (1984). Figure 12.4, shown earlier, is a composite of three activity maps for 0, 0.1, and 0.2% of NEODOL 25-3S as a synthetic surfactant for 1.55% sodium metasilicate with Oil G at 30.2°C. We can see in the figure that without the synthetic surfactant, the active region of this system is below the sodium ion concentration supplied by the alkali. However, with 0.1 and 0.2% of NEODOL 25-3S (60% active) present, the active region is above the sodium ion concentration supplied by the alkali, so additional sodium ions must be added to reach optimum salinity. [Pg.481]

Apparently, higher acid number of a given crude, either by nature or due to the addition of known acid, would lower its interfacial tension. However, Cooke, Williams, and Keledzne (4) found that although in-situ oxidation with air further increases the acid number of a given crude, this artificially-made high acid number crude could not be successfully flooded with alkaline water. [Pg.110]

Enhanced oil recovery by alkaline flooding was proposed some years ago as an inexpensive way to take advantage of the acid components that occur naturally in some crude oils [80,81]. The stabilization of oil-in-water emulsions can also be attained this way. In these cases the carboxylic acid contained in the crude oil adsorbs at the O/W interface, where it is neutralized into a carboxylic salt with surfactant properties such as interfacial tension lowering or emulsification. Fatty amines and their cationic counterparts at low pH are routinely used to stabilize asphalt emulsions for roads and pavement. [Pg.267]

PH Krumkine, JS Falcone, TC Campbell. Surfactant flooding. 1 The effect of alkaline additives on interfacial tension, swfactant adsorption, and recovery efficiency. Soc Petrol Eng J 22 503, 1982. [Pg.492]

In the alkaline flood process, the surfactant is generated by the in situ chemical reaction between the alkali of the aqueous phase and the organic acids of the oil phase The surface-active reaction products can adsorb onto the rock surface to alter the wettability of the reservoir rock and/or can adsorb onto the oil-water interface to lower the interfacial tension. At these lowered tensions (1-10 dyne/cm), surface or shear-driven forces promote the formation of stable oil-in-water emulsions or unstable water-in-oil emulsions the nature of the emulsion phase depends on the pH, temperature, and electrolyte type and concentration. These different paths of the surface-active reaction products have created different recovery mechanisms of alkaline flooding. The four alkaline recovery mechanisms which have been cited in the recent literature are (i) Emulsification and Entrainment, (ii) Emulsification and Entrapment, (iii) Wettability Reversal from Oil-to Water-Wet, and (iv) Wettability Reversal from Water- to Oil-Wet. These four mechanisms are similar in that alkaline flooding enhances the recovery of acidic oil by two-stage processes. [Pg.249]

Mechanistic interpretations The results of the dynamic and equilibrium displacement experiments are used to evaluate and further define mechanisms by which alkaline floods increase the displacement and recovery of acidic oil in secondary mode and the tertiary mode floods. The data sets used in the mechanistic interpretations of alkaline floods are (a) overall and incremental recovery efficiencies from dynamic and equilibrium displacement experiments, (b) production and effluent concentration profiles from dynamic displacement experiments, (c) capillary pressure as a function of saturation curves and conditions of wettability from equilibrium displacement experiments, (d) interfacial tension reduction and contact angle alteration after contact of aqueous alkali with acidic oil and, (e) emulsion type, stability, size and mode of formation. These data sets are used to interpret the results of the partially scaled dynamic experiments in terms of two-stage phase alteration mechanisms of emulsification followed by entrapment, entrainment, degrees and states of wettability alteration or coalescence. [Pg.263]

The decreases in the water relative permeabilities of the high pH/high salt alkaline floods are directly contrasted with the increases in the relative permeabilities to water at the end of the moderate pH/high salt flood (compare the end point relative permeabilities column in Table 2). The increased permeability to water is believed to be caused by the formation of rigid interfacial films (which increases the resistance to flow in oil filled pores) and by the oil-wet conditions (under which water flows in the less restrictive flow paths). Such a reduction in permeability, which has been used to indicate the existence of a low tension mechanism (18), is not a valid low tension index since the interfacial tension minimum is only 3.5 dynes/cm and the capillary number is 1 x 10" for the buffered alkali/salt-oleic acid system. [Pg.271]

Ultra-low tension In the alkaline flooding of acidic acids, some reduction in interfacial tension (from 30 to approximately 10 1 dynes/cm) is necessary for the emulsification and subsequent mobilization of waterflooded residual oil by the previously discussed phase alteration mechanisms. The residual oil may also be mobilized and produced by a low-tension displacement process which is similar to surfactant flooding if the interfacial tension can be further reduced to ultra-low values (10 to 10 dynes/cm). [Pg.274]

The data from these tests show that sodium orthosilicate is more effective than sodium hydroxide in recovering residual oil under the conditions studied, both for continuous flooding and when 0.5 PV of alkali was injected. The mechanisms through which sodium orthosilicate produced better recovery than sodium hydroxide in this system have not been completely elucidated. Reduction in interfacial tension is similar for both chemicals, so other factors must play a more important role. Somasundaran (26) has shown that sodium silicates are more effective than other alkaline chemicals in reducing surfactant adsorption on rock surfaces. Wasan (27,28) has indicated that there are differences in coalescence behavior and emulsion stability which favor sodium orthosilicate over sodium hydroxide. Further work is being done in this area in an attempt to define the limits of physically measurable parameters which can be used for screening potential alkaline flooding candidates. [Pg.296]

Amott method, to be preferentially oil-wet, RDI= —0.82. Laboratory work was undertaken to determine the feasibility of injecting alkaline solutions to improve oil recovery. These experiments were designed to produce surfactants in-situ. The surfactants would both lower the interfacial tension and react with the reservoir rock surface to modify the wettability of the porous media. The experimental work considered the injection of seawater and sodium hydroxide mixtures into cores. The experimental results show that the oil recovery was higher than 50% when the alkaline solution was injected. The conclusion was that surfactant produced by alkaline injection altered the rock wettability from oil-wet to intermediate-wet, increasing oU recovery. One precaution with alkaline flooding is that the range of reactions and the change in pH can cause unexpected variation in oil recovery if the reservoir and fluids are not well characterized. [Pg.194]

Alkaline Surfactant Polymer (ASP) Flood Need to soften water for alkaline, which requires greater Opex and Capex. Questions over predominant recovery mechanism arise. Is the increased oil production due to conformance by polymer or reduced interfacial tension from the alkaline and surfactant ... [Pg.269]


See other pages where Interfacial tension alkaline flooding is mentioned: [Pg.44]    [Pg.379]    [Pg.289]    [Pg.887]    [Pg.311]    [Pg.389]    [Pg.461]    [Pg.510]    [Pg.536]    [Pg.110]    [Pg.136]    [Pg.97]    [Pg.15]    [Pg.274]    [Pg.121]   
See also in sourсe #XX -- [ Pg.127 , Pg.400 , Pg.425 ]




SEARCH



Alkaline interfacial tension

Interfacial tension

© 2024 chempedia.info