Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkaline earth catalysts

Recently, a combinatorial investigation of alkylation of toluene with methanol to produce styrene with basic zeolites and alkaline earth catalysts was performed (257). The results of tests involving preparation and testing of more than 200 catalysts were modest, and these results emphasize that fine-tuning of the acid and base properties necessary to achieve better alkylation catalysts is not an easy task. [Pg.279]

It is very interesting that by using alkaline-earth catalysts in the ethoxylation reaction (Ca, Sr or Ba alcoholates or carboxylates), a narrower distribution of EO sequences per hydroxyl group resulted, compared to use of alkaline catalysts. For example, with barium alcoholate as catalyst around 80-85% primary hydroxyl, at 15% EO as terminal block, are obtained with polyether triols (MW of 5000 daltons), compared to 65-75% primary hydroxyl obtained in the presence of KOH. The explanation of this behaviour... [Pg.111]

Di Felice, L., Courson, C., Foscolo, P.U. and Kiennemann, A. (2011) Iron and nickel doped alkaline-earth catalysts for biomass gasification with simultaneous tar reformation and CO2 capture. International Journal of Hydrogen Energy, 36, 5296-5310. [Pg.382]

IMMORTAL RING-OPENING POLYMERIZATIONS OF CYCLIC ESTERS CATALYZED BY SINGLE-SITE ALKALINE EARTH CATALYSTS... [Pg.365]

Acid—Base Chemistry. Acetic acid dissociates in water, pK = 4.76 at 25°C. It is a mild acid which can be used for analysis of bases too weak to detect in water (26). It readily neutralizes the ordinary hydroxides of the alkaU metals and the alkaline earths to form the corresponding acetates. When the cmde material pyroligneous acid is neutralized with limestone or magnesia the commercial acetate of lime or acetate of magnesia is obtained (7). Acetic acid accepts protons only from the strongest acids such as nitric acid and sulfuric acid. Other acids exhibit very powerful, superacid properties in acetic acid solutions and are thus useful catalysts for esterifications of olefins and alcohols (27). Nitrations conducted in acetic acid solvent are effected because of the formation of the nitronium ion, NO Hexamethylenetetramine [100-97-0] may be nitrated in acetic acid solvent to yield the explosive cycl o trim ethyl en etrin itram in e [121 -82-4] also known as cyclonit or RDX. [Pg.66]

Processes rendered obsolete by the propylene ammoxidation process (51) include the ethylene cyanohydrin process (52—54) practiced commercially by American Cyanamid and Union Carbide in the United States and by I. G. Farben in Germany. The process involved the production of ethylene cyanohydrin by the base-cataly2ed addition of HCN to ethylene oxide in the liquid phase at about 60°C. A typical base catalyst used in this step was diethylamine. This was followed by liquid-phase or vapor-phase dehydration of the cyanohydrin. The Hquid-phase dehydration was performed at about 200°C using alkah metal or alkaline earth metal salts of organic acids, primarily formates and magnesium carbonate. Vapor-phase dehydration was accomphshed over alumina at about 250°C. [Pg.183]

Pentaerythritol is produced by reaction of formaldehyde [50-00-0] and acetaldehyde [75-07-0] in the presence of a basic catalyst, generally an alkah or alkaline-earth hydroxide. Reaction proceeds by aldol addition to the carbon adjacent to the hydroxyl on the acetaldehyde. The pentaerythrose [3818-32-4] so produced is converted to pentaerythritol by a crossed Cannizzaro reaction using formaldehyde. All reaction steps are reversible except the last, which allows completion of the reaction and high yield industrial production. [Pg.465]

Ultimately, as the stabilization reactions continue, the metallic salts or soaps are depleted and the by-product metal chlorides result. These metal chlorides are potential Lewis acid catalysts and can greatiy accelerate the undesired dehydrochlorination of PVC. Both zinc chloride and cadmium chloride are particularly strong Lewis acids compared to the weakly acidic organotin chlorides and lead chlorides. This significant complication is effectively dealt with in commercial practice by the co-addition of alkaline-earth soaps or salts, such as calcium stearate or barium stearate, ie, by the use of mixed metal stabilizers. [Pg.546]

The use of alkali or alkaline-earth sulfides cataly2es the reaction so that it is complete in a few hours at 150—160°C use of aluminum chloride as the catalyst gives a comparable reaction rate at 115°C. When an excess of sulfur is used, the product can be distilled out of the reactor, and the residue of sulfur forms part of the charge in the following batch reaction. The reaction is carried out in a stainless steel autoclave, and the yield is better than 98% based on either reactant. Phosphoms sulfochloride is used primarily in the manufacture of insecticides (53—55), such as Parathion. [Pg.371]

Lewis acids, such as the haUde salts of the alkaline-earth metals, Cu(I), Cu(II), 2inc, Fe(III), aluminum, etc, are effective catalysts for this reaction (63). The ammonolysis of polyamides obtained from post-consumer waste has been used to cleave the polymer chain as the first step in a recycle process in which mixtures of nylon-6,6 and nylon-6 can be reconverted to diamine (64). The advantage of this approach Hes in the fact that both the adipamide [628-94-4] and 6-aminohexanoamide can be converted to hexarnethylenediarnine via their respective nitriles in a conventional two-step process in the presence of the diamine formed in the original ammonolysis reaction, thus avoiding a difficult and cosdy separation process. In addition, the mixture of nylon-6,6 and nylon-6 appears to react faster than does either polyamide alone. [Pg.225]

Heterogeneous Catalytic Polymerization. The preparation of polymers of ethylene oxide with molecular weights greater than 100,000 was first reported in 1933. The polymer was produced by placing ethylene oxide in contact with an alkaline-earth oxide for extended periods (61). In the 1950s, the low yield and low polymerization rates of the eady work were improved upon by the use of alkaline-earth carbonates as the catalysts (62). [Pg.342]

The cubic 2inc blende form of boron nitride is usually prepared from the hexagonal or rhombohedral form at high (4—6 GPa (40—60 kbar)) pressures and temperatures (1400—1700°C). The reaction is accelerated by lithium or alkaline-earth nitrides or amides, which are the best catalysts, and form intermediate Hquid compounds with BN, which are molten under synthesis conditions (11,16). Many other substances can aid the transformation. At higher pressures (6—13 GPa) the cubic or wurt2itic forms are obtained without catalysts (17). [Pg.220]

Dichloroethane is produced by the vapor- (28) or Hquid-phase chlorination of ethylene. Most Hquid-phase processes use small amounts of ferric chloride as the catalyst. Other catalysts claimed in the patent Hterature include aluminum chloride, antimony pentachloride, and cupric chloride and an ammonium, alkaU, or alkaline-earth tetrachloroferrate (29). The chlorination is carried out at 40—50°C with 5% air or other free-radical inhibitors (30) added to prevent substitution chlorination of the product. Selectivities under these conditions are nearly stoichiometric to the desired product. The exothermic heat of reaction vapori2es the 1,2-dichloroethane product, which is purified by distillation. [Pg.8]

Polymers with much higher average molecular weights, from 90,000 to 4 x 10 , are formed by a process of coordinate anionic polymerization (43—45). The patent Hterature describes numerous organometaUic compounds, aLkaline-earth compounds, and mixtures as polymerization catalysts. Iron oxides that accumulate in ethylene oxide storage vessels also catalyze polymerization. This leads to the formation of nonvolatile residue (NVR) no inhibitor has been found (46). [Pg.453]

Grown Ethers. Ethylene oxide forms cycHc oligomers (crown ethers) in the presence of fluorinated Lewis acids such as boron tritiuoride, phosphoms pentafluoride, or antimony pentafluoride. Hydrogen fluoride is the preferred catalyst (47). The presence of BF , PF , or SbF salts of alkah, alkaline earth, or transition metals directs the oligomerization to the cycHc tetramer, 1,4,7,10-tetraoxacyclododecane [294-93-9] (12-crown-4), pentamer, 1,4,7,10,13-pentaoxacyclopentadecane [33100-27-6] (15-crown-6), andhexamer, 1,4,7,10,13,16-hexaoxacyclooctadecane [17455-13-9]... [Pg.453]

Silver alone on a support does not give rise to a good catalyst (150). However, addition of minor amounts of promoter enhance the activity and the selectivity of the catalyst, and improve its long-term stabiHty. Excess addition lowers the catalyst performance (151,152). Promoter formulations have been studied extensively in the chemical industry. The most commonly used promoters are alkaline-earth metals, such as calcium or barium, and alkaH metals such as cesium, mbidium, or potassium (153). Using these metals in conjunction with various counter anions, selectivities as high as 82—87% were reported. Precise information on commercial catalyst promoter formulations is proprietary (154—156). [Pg.458]

Turning to non-metallic catalysts, photoluminescence studies of alkaline-earth oxides in dre near-ultra-violet region show excitation of electrons corresponding to duee types of surface sites for the oxide ions which dominate the surface sUmcture. These sites can be described as having different cation co-ordination, which is normally six in the bulk, depending on the surface location. Ions on a flat surface have a co-ordination number of 5 (denoted 5c), those on the edges 4 (4c), and dre kiirk sites have co-ordination number 3 (3c). The latter can be expected to have higher chemical reactivity than 4c and 5c sites, as was postulated for dre evaporation mechanism. [Pg.124]

An effect which is frequently encountered in oxide catalysts is that of promoters on the activity. An example of this is the small addition of lidrium oxide, Li20 which promotes, or increases, the catalytic activity of dre alkaline earth oxide BaO. Although little is known about the exact role of lithium on the surface structure of BaO, it would seem plausible that this effect is due to the introduction of more oxygen vacancies on the surface. This effect is well known in the chemistry of solid oxides. For example, the addition of lithium oxide to nickel oxide, in which a solid solution is formed, causes an increase in the concentration of dre major point defect which is the Ni + ion. Since the valency of dre cation in dre alkaline earth oxides can only take the value two the incorporation of lithium oxide in solid solution can only lead to oxygen vacaircy formation. Schematic equations for the two processes are... [Pg.141]

A number of basic materials such as hydroxides, hydrides and amides of alkaline and alkaline earth metals and metal oxides such as zinc oxide and antimony oxide are useful catalysts for the reaction. Acid ester-exchange catalysts such as boric acid, p-toluene sulphonic acid and zinc chloride are less... [Pg.559]

The heavier alkaline earth metals Ca, Sr, Ba (and Ra) react even more readily with non-metals, and again the direct formation of nitrides M3N2 is notable. Other products are similar though the hydrides are more stable (p. 65) and the carbides less stable than for Be and Mg. There is also a tendency, previously noted for the alkali metals (p. 84), to form peroxides MO2 of increasing stability in addition to the normal oxides MO. Calcium, Sr and Ba dissolve in liquid NH3 to give deep blue-black solutions from which lustrous, coppery, ammoniates M(NH3)g can be recovered on evaporation these ammoniates gradually decompose to the corresponding amides, especially in the presence of catalysts ... [Pg.113]

Alkaline earth metals in general, and sodium in particular, are detrimental to the FCC catalyst. Sodium permanently deactivates the catalyst by neutralizing its acid sites. In the regenerator it causes the zeolite to collapse, particularly in the presence of vanadium. Sodium comes from two prime sources ... [Pg.67]

Tabushi, I. Yamamura, K. Water Soluble Cyclophanes as Hosts and Catalysts, 113,145-182 (1983). Takagi, M., and Ueno, K. Crown Compounds as Alkali and Alkaline Earth Metal Ion Selective Chromogenic Reagents. 121, 39-65 (1984). [Pg.264]

Ca3(BN2)2 is readily formed when (distilled) calcium metal is melted in the presence of (layer-type) boron nitride. This reaction provides some insight on how alkaline-earth metals like calcium may act as a catalyst in the phase transformation of layered a-BN into its cubic modification. Instead of metals, nowadays alkaline-earth (Ca, Sr, Ba) nitridoborates can be used as a flux catalyst in high-pressure and high-temperature transformation reactions to produce cubic boron nitride [15]. [Pg.126]

The DKR of amine is more challenging compared to that of secondary alcohol since no metal catalysts have been known for the efficient racemizahon of amine. Reetz et al. reported for the first time the DKR of amine, in which 1-phenylethylamine was resolved by the combination of lipase and palladium (Scheme 4). In this procedure, CALB and Pd/C were employed as the combo catalysts. However, the DKR required a very long reaction time (8 days) at 50-55°C and provided a poor isolated yield (60%). Recently, an improved procedure using Pd on alkaline earth salts as the racemizahon catalyst was reported by Jacobs et al. " The DKR reachons were performed at 70°C for 24-72 h and 75-88% yields were obtained with 99% or greater enanhomeric excess. [Pg.72]


See other pages where Alkaline earth catalysts is mentioned: [Pg.492]    [Pg.48]    [Pg.88]    [Pg.492]    [Pg.48]    [Pg.88]    [Pg.198]    [Pg.488]    [Pg.477]    [Pg.57]    [Pg.342]    [Pg.209]    [Pg.219]    [Pg.217]    [Pg.458]    [Pg.140]    [Pg.208]    [Pg.125]    [Pg.100]    [Pg.121]    [Pg.162]    [Pg.196]    [Pg.153]    [Pg.743]    [Pg.382]    [Pg.22]    [Pg.320]   
See also in sourсe #XX -- [ Pg.111 , Pg.112 ]




SEARCH



Alkaline catalysts

Catalysts alkaline earth metals

Palladium/alkaline earth metal based racemization catalyst

© 2024 chempedia.info