Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adipic manufacture

Colourless liquid with a strong peppermintlike odour b.p. 155" C. Manufactured by passing cyclohexanol vapour over a heated copper catalyst. Volatile in steam. Oxidized to adipic acid. Used in the manufacture of caprolactam. Nylon, adipic acid, nitrocellulose lacquers, celluloid, artificial leather and printing inks. [Pg.122]

C, b.p. 16UC. Manufactured by heating phenol with hydrogen under pressure in the presence of suitable catalysts. Oxidized to adipic acid (main use as intermediate for nylon production) dehydrogenated to cyclohexanone. [Pg.122]

H2N (CH2)a NH2- Colourless solid when pure m.p. 4LC, b.p. 204 C. Manufactured by the electrochemical combination of two molecules of acrylonitrile to adiponitrile followed by catalytic reduction, or by a series of steps from cyclohexanone via adipic acid. Used in the production of Nylon [6, 6]. [Pg.131]

Nylon A class of synthetic fibres and plastics, polyamides. Manufactured by condensation polymerization of ct, oj-aminomonocarboxylic acids or of aliphatic diamines with aliphatic dicarboxylic acids. Also rormed specifically, e.g. from caprolactam. The different Nylons are identified by reference to the carbon numbers of the diacid and diamine (e.g. Nylon 66 is from hexamethylene diamine and adipic acid). Thermoplastic materials with high m.p., insolubility, toughness, impact resistance, low friction. Used in monofilaments, textiles, cables, insulation and in packing materials. U.S. production 1983 11 megatonnes. [Pg.284]

Reduction. Hydrogenation of dimethyl adipate over Raney-promoted copper chromite at 200°C and 10 MPa produces 1,6-hexanediol [629-11-8], an important chemical intermediate (32). Promoted cobalt catalysts (33) and nickel catalysts (34) are examples of other patented processes for this reaction. An eadier process, which is no longer in use, for the manufacture of the 1,6-hexanediamine from adipic acid involved hydrogenation of the acid (as its ester) to the diol, followed by ammonolysis to the diamine (35). [Pg.240]

Since adipic acid has been produced in commercial quantities for almost 50 years, it is not surprising that many variations and improvements have been made to the basic cyclohexane process. In general, however, the commercially important processes stiU employ two major reaction stages. The first reaction stage is the production of the intermediates cyclohexanone [108-94-1] and cyclohexanol [108-93-0], usuaHy abbreviated as KA, KA oil, ol-one, or anone-anol. The KA (ketone, alcohol), after separation from unreacted cyclohexane (which is recycled) and reaction by-products, is then converted to adipic acid by oxidation with nitric acid. An important alternative to this use of KA is its use as an intermediate in the manufacture of caprolactam, the monomer for production of nylon-6 [25038-54-4]. The latter use of KA predominates by a substantial margin on a worldwide basis, but not in the United States. [Pg.240]

Although many variations of the cyclohexane oxidation step have been developed or evaluated, technology for conversion of the intermediate ketone—alcohol mixture to adipic acid is fundamentally the same as originally developed by Du Pont in the early 1940s (98,99). This step is accomplished by oxidation with 40—60% nitric acid in the presence of copper and vanadium catalysts. The reaction proceeds at high rate, and is quite exothermic. Yield of adipic acid is 92—96%, the major by-products being the shorter chain dicarboxytic acids, glutaric and succinic acids,and CO2. Nitric acid is reduced to a combination of NO2, NO, N2O, and N2. Since essentially all commercial adipic acid production arises from nitric acid oxidation, the trace impurities patterns ate similar in the products of most manufacturers. [Pg.242]

Adipic acid is a very large volume organic chemical. Worldwide production in 1986 reached 1.6 x 10 t (3.5 x 10 lb) (158) and in 1989 was estimated at more than 1.9 x 10 t (Table 7). It is one of the top fifty (159) chemicals produced in the United States in terms of volume, with 1989 production estimated at 745,000 t (160). Growth rate in demand in the United States for the period 1988—1993 is estimated at 2.5% per year based on 1987—1989 (160). Table 7 provides individual capacities for U.S. manufacturers. Western European capacity is essentially equivalent to that in the United States at 800,000 t/yr. Demand is highly cycHc (161), reflecting the automotive and housing markets especially. Prices usually foUow the variabiUty in cmde oil prices. Adipic acid for nylon takes about 60% of U.S. cyclohexane production the remainder goes to caprolactam for nylon-6, export, and miscellaneous uses (162). In 1989 about 88% of U.S. adipic acid production was used in nylon-6,6 (77% fiber and 11% resin), 3% in polyurethanes, 2.5% in plasticizers, 2.7% miscellaneous, and 4.5% exported (160). [Pg.245]

About 85% of U.S. adipic acid production is used captively by the producer, almost totally ia the manufacture of nylon-6,6 (194). The remaining 15% is sold ia the merchant market for a large number of appHcations. These have been developed as a result of the large scale availabihty of this synthetic petrochemical commodity. Prices for 1960—1989 for standard resia-grade material have parahed raw material and energy costs (petroleum and natural gas)... [Pg.246]

Raw Materials. PVC is inherently a hard and brittle material and very sensitive to heat it thus must be modified with a variety of plasticizers, stabilizers, and other processing aids to form heat-stable flexible or semiflexible products or with lesser amounts of these processing aids for the manufacture of rigid products (see Vinyl polymers, vinyl chloride polymers). Plasticizer levels used to produce the desired softness and flexibihty in a finished product vary between 25 parts per hundred (pph) parts of PVC for flooring products to about 80—100 pph for apparel products (245). Numerous plasticizers (qv) are commercially available for PVC, although dioctyl phthalate (DOP) is by far the most widely used in industrial appHcations due to its excellent properties and low cost. For example, phosphates provide improved flame resistance, adipate esters enhance low temperature flexibihty, polymeric plasticizers such as glycol adipates and azelates improve the migration resistance, and phthalate esters provide compatibiUty and flexibihty (245). [Pg.420]

Alternative Control Techniques Document Nitric and Adipic Acid Manufacturing Plants, EPA-450/3-91-026, EPA, Research Triangle Park, N.C., Dec. 1991. [Pg.48]

Ingredients. Nylon-6,6 is made from the reaction of adipic acid [124-04-9] and hexamethylenediamine [124-09-4]. The manufacture of intermediates for polyamides is extremely important not only is the quaUty of the polymer, such as color, degree of polymerization, and linearity, strongly dependent on the ingredient quaUty, but also the economic success of the producer is often determined by the yields and cost of manufacture of the ingredients. [Pg.232]

Adipic acid (qv) has a wide variety of commercial uses besides the manufacture of nylon-6,6, and thus is a common industrial chemical. Many routes to its manufacture have been developed over the years but most processes in commercial use proceed through a two-step oxidation of cyclohexane [110-83-8] or one of its derivatives. In the first step, cyclohexane is oxidized with air at elevated temperatures usually in the presence of a suitable catalyst to produce a mixture of cyclohexanone [108-94-1] and cyclohexanol [108-93-0] commonly abbreviated KA (ketone—alcohol) or KA oil ... [Pg.232]

The second difficulty, degradation, required the development of a two-step polyamidation process following salt formation (157). During salt formation, tetramethylenediammonium adipate salt is formed in water solution at approximately 50% concentration or at a higher concentration in a suspension. As in nylon-6,6 manufacture, this salt solution, when diluted, permits easy adjustment of the stoichiometry of the reactants by means of pH measurement. [Pg.235]

The by-product of this process, pelargonic acid [112-05-0] is also an item of commerce. The usual source of sebacic acid [111-20-6] for nylon-6,10 [9008-66-6] is also from a natural product, ticinoleic acid [141-22-0] (12-hydroxyoleic acid), isolated from castor oil [8001-79-4]. The acid reacts with excess sodium or potassium hydroxide at high temperatures (250—275°C) to produce sebacic acid and 2-octanol [123-96-6] (166) by cleavage at the 9,10-unsaturated position. The manufacture of dodecanedioic acid [693-23-2] for nylon-6,12 begins with the catalytic trimerization of butadiene to make cyclododecatriene [4904-61-4] followed by reduction to cyclododecane [294-62-2] (see Butadiene). The cyclododecane is oxidatively cleaved to dodecanedioic acid in a process similar to that used in adipic acid production. [Pg.236]

Succinic anhydride [108-30-5] (3,4-dihydro-2,5-furandione butanedioic anhydride tetrahydro-2,5-dioxofuran 2,5-diketotetrahydrofuran succinyl oxide), C H O, was first obtained by dehydration of succinic acid. In the 1990s anhydride is produced by hydrogenation of maleic anhydride and the acid by hydration of the anhydride, by hydrogenation of aqueous solutions of maleic acid, or as a by-product in the manufacture of adipic acid (qv) (see Maleic ANHYDRIDE, MALEIC ACID, AND FUMARIC ACID). [Pg.534]

Succinic acid reacts with urea in aqeous solution to give a 2 1 compound having mp 141°C (116,117), which has low solubiUty in water. A method for the recovery of succinic acid from the wastes from adipic acid manufacture is based on this reaction (118,119). The monoamide succinamic acid [638-32-4] NH2COCH2CH2COOH, is obtained from ammonia and the anhydride or by partial hydrolysis of succinknide. The diamide succinamide [110-14-3], (CH2C0NH2)2, nip 268—270°C, is obtained from succinyl chloride and ammonia or by partial hydrolysis of succinonitrile. Heating succinknide with a primary amine gives A/-alkylsucckiknides (eq. 9). [Pg.536]

In addition, polyester polyols are made by the reaction of caprolactone with diols. Poly(caprolactone diols) are used in the manufacture of thermoplastic polyurethane elastomers with improved hydrolytic stabiHty (22). The hydrolytic stabiHty of the poly(caprolactone diol)-derived TPUs is comparable to TPUs based on the more expensive long-chain diol adipates (23). Polyether/polyester polyol hybrids are synthesized from low molecular weight polyester diols, which are extended with propylene oxide. [Pg.347]

Polyester and polyether diols are used with MDI in the manufacture of thermoplastic polyurethane elastomers (TPU). The polyester diols are obtained from adipic acid and diols, such as ethylene glycol, 1,4-butanediol, or 1,6-hexanediol. The preferred molecular weights are 1,000 to 2,000, and low acid numbers are essential to ensure optimal hydrolytic stabihty. Also, caprolactone-derived diols and polycarbonate diols are used. Polyether diols are... [Pg.350]

Benzene is hydrogenated to cyclohexane. Cyclohexane is then oxidized to cyclohexanol, cyclohexanone, or adipic acid (qv). Adipic acid is used to produce nylon. Cyclohexane manufacture was responsible for about 14% of benzene consumption in 1988. [Pg.49]

The manufacture of hexamethylenediamine [124-09-4] a key comonomer in nylon-6,6 production proceeds by a two-step HCN addition reaction to produce adiponittile [111-69-3] NCCH2CH2CH2CH2CN. The adiponittile is then hydrogenated to produce the desired diamine. The other half of nylon-6,6, adipic acid (qv), can also be produced from butadiene by means of either of two similar routes involving the addition of CO. Reaction between the diamine and adipic acid [124-04-5] produces nylon-6,6. [Pg.342]

The other CO route for adipic acid manufacture involves 1,4-addition of CO and O2 to butadiene to produce an intermediate, which is subsequently hydrogenated and hydroly2ed to adipic acid (50). This is called the oxycarbonylation process. Both the BASF and the oxycarbonylation processes have been intensively investigated. [Pg.342]

The most important use of cyclohexanone is as a chemical intermediate in nylon manufacture 97% of all cyclohexanone output is used either to make caprolactam for nylon-6, or adipic acid for nylon-6,6. In the caprolactam process cyclohexanone is converted to cyclohexanone oxime (mp,... [Pg.426]

Seb cic Acid. Sebacic acid [111-20-6] C QH gO, is an important intermediate in the manufacture of polyamide resins (see Polyamides). It has an estimated demand worldwide of approximately 20,000 t/yr. The alkaline hydrolysis of castor oil (qv), which historically has shown some wide fluctuations in price, is the conventional method of preparation. Because of these price fluctuations, there have been years of considerable interest in an electrochemical route to sebacic acid based on adipic acid [124-04-9] (qv) as the starting material. The electrochemical step involves the Kolbn-type or Brown-Walker reaction where anodic coupling of the monomethyl ester of adipic acid forms dimethyl sebacate [106-79-6]. The three steps in the reaction sequence from adipic acid to sebacic acid are as follows ... [Pg.102]

Manufacture of pure products, such as sulfuric acid, nitric acid, nitrates, phosphates, adipic acid, and so on... [Pg.2105]

In addition several other materials have been reported by industrial companies, but have not at the time of writing been commercialised. These include the product of condensation of 2,2-bis-(p-aminocyclohexyl)propane (VI) (Figure 18.28) with a mixture of adipic and azelaic acid (Phillips Petroleum), a research material produced in the old German Democratic Republic obtained by melt condensation of /ranj -cyclohexane-l,4-dicarboxylic acid (VII) (Figure 18.28) and the two trimethylhexamethylenediamine isomers used in the manufacture of Trogamid T, and another amorphous material (Rilsan N by Ato Chimie). [Pg.512]

Plasticizers can be classified according to their chemical nature. The most important classes of plasticizers used in rubber adhesives are phthalates, polymeric plasticizers, and esters. The group phthalate plasticizers constitutes the biggest and most widely used plasticizers. The linear alkyl phthalates impart improved low-temperature performance and have reduced volatility. Most of the polymeric plasticizers are saturated polyesters obtained by reaction of a diol with a dicarboxylic acid. The most common diols are propanediol, 1,3- and 1,4-butanediol, and 1,6-hexanediol. Adipic, phthalic and sebacic acids are common carboxylic acids used in the manufacture of polymeric plasticizers. Some poly-hydroxybutyrates are used in rubber adhesive formulations. Both the molecular weight and the chemical nature determine the performance of the polymeric plasticizers. Increasing the molecular weight reduces the volatility of the plasticizer but reduces the plasticizing efficiency and low-temperature properties. Typical esters used as plasticizers are n-butyl acetate and cellulose acetobutyrate. [Pg.626]


See other pages where Adipic manufacture is mentioned: [Pg.16]    [Pg.186]    [Pg.238]    [Pg.239]    [Pg.240]    [Pg.244]    [Pg.245]    [Pg.245]    [Pg.94]    [Pg.525]    [Pg.46]    [Pg.47]    [Pg.330]    [Pg.122]    [Pg.128]    [Pg.233]    [Pg.235]    [Pg.168]    [Pg.18]    [Pg.426]    [Pg.426]    [Pg.186]    [Pg.102]    [Pg.3]   
See also in sourсe #XX -- [ Pg.149 ]




SEARCH



ADIPATE

Adipic acid manufacture

© 2024 chempedia.info