Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross-linking adhesives

It is also discussed in the literature that, under moist conditions, basic complexes can be formed by reaction of zinc phosphate with inorganic ions or with carboxylic groups of the resin used, which lead, by reaction with metal ions, to so-called adhesion, cross-linking and inhibitor complexes [5.67-5.69]. Under the assumption, that the hydrolyzation process is the prerequisite for the effectiveness of zinc phosphates, this means that such pigments need a certain time before becoming active [5.69]. [Pg.215]

Use Lubricants, plasticizers, paint and varnish vehicles, gelling agents, urethane intermediates, adhesives, cross-linking agents, humectants, textile fiber finishes, functional fluids, surface-active agents, dispersants and emulsifiers in foods, pharmaceuticals, cosmetic preparations. [Pg.1012]

These monomers provide a means for introducing carboxyl groups into copolymers. In copolymers these acids can improve adhesion properties, improve freeze-thaw and mechanical stability of polymer dispersions, provide stability in alkalies (including ammonia), increase resistance to attack by oils, and provide reactive centers for cross-linking by divalent metal ions, diamines, or epoxides. [Pg.1013]

The use of hydroxyethyl (also hydroxypropyl) methacrylate as a monomer permits the introduction of reactive hydroxyl groups into the copolymers. This offers the possibility for subsequent cross-linking with an HO-reactive difunctional agent (diisocyanate, diepoxide, or melamine-formaldehyde resin). Hydroxyl groups promote adhesion to polar substrates. [Pg.1013]

Phenol—formaldehyde (PF) was the first of the synthetic adhesives developed. By combining phenol with formaldehyde, which has exceptional cross-linking abiHties with many chemicals and materials, and a small amount of sodium hydroxide, a resin was obtained. The first resins soHdified as they cooled, and it was discovered that if it was ground to a powder with a small amount of additional formaldehyde and the appHcation of more heat, the mixture would Hquify and then convert to a permanently hard material. Upon combination of the powdered resin mixture with a filler material such as wood flour, the result then being placed in a mold and pressed under heat and pressure, a hard, durable, black plastic material was found to result. For many years these resulting products were called BakeHte, the trade name of the inventor. BakeHte products are still produced today, but this use accounts for only a small portion of the PF resins used. [Pg.378]

Esters. Most acryhc acid is used in the form of its methyl, ethyl, and butyl esters. Specialty monomeric esters with a hydroxyl, amino, or other functional group are used to provide adhesion, latent cross-linking capabihty, or different solubihty characteristics. The principal routes to esters are direct esterification with alcohols in the presence of a strong acid catalyst such as sulfuric acid, a soluble sulfonic acid, or sulfonic acid resins addition to alkylene oxides to give hydroxyalkyl acryhc esters and addition to the double bond of olefins in the presence of strong acid catalyst (19,20) to give ethyl or secondary alkyl acrylates. [Pg.150]

Anaerobic stmctural adhesives are typically formulated from acryhc monomers such as methyl methacrylate [80-62-6] C Hg02, and methacrylic acid [79-41-4] (see Acrylic ester polymers). Very often, cross-linking agents such as dimethacrylates are also added. A peroxide, such as cumene... [Pg.233]

Cyanoacrylate adhesives (Super-Glues) are materials which rapidly polymerize at room temperature. The standard monomer for a cyanoacrylate adhesive is ethyl 2-cyanoacrylate [7085-85-0], which readily undergoes anionic polymerization. Very rapid cure of these materials has made them widely used in the electronics industry for speaker magnet mounting, as weU as for wire tacking and other apphcations requiring rapid assembly. Anionic polymerization of a cyanoacrylate adhesive is normally initiated by water. Therefore, atmospheric humidity or the surface moisture content must be at a certain level for polymerization to take place. These adhesives are not cross-linked as are the surface-activated acryhcs. Rather, the cyanoacrylate material is a thermoplastic, and thus, the adhesives typically have poor temperature resistance. [Pg.233]

Elastomeric Modified Adhesives. The major characteristic of the resins discussed above is that after cure, or after polymerization, they are extremely brittie. Thus, the utility of unmodified common resins as stmctural adhesives would be very limited. Eor highly cross-linked resin systems to be usehil stmctural adhesives, they have to be modified to ensure fracture resistance. Modification can be effected by the addition of an elastomer which is soluble within the cross-linked resin. Modification of a cross-linked resin in this fashion generally decreases the glass-transition temperature but increases the resin dexibiUty, and thus increases the fracture resistance of the cured adhesive. Recendy, stmctural adhesives have been modified by elastomers which are soluble within the uncured stmctural adhesive, but then phase separate during the cure to form a two-phase system. The matrix properties are mosdy retained the glass-transition temperature is only moderately affected by the presence of the elastomer, yet the fracture resistance is substantially improved. [Pg.233]

The physical properties of polyurethane adhesives result from a special form of phase separation which occurs in the cross-linked polyurethane stmcture. The urethane portions of polyurethanes tend to separate from the polyol portion of the resin, providing good shear strength, good low temperature flexibiUty, and high peel strength. Catalysts such as dibutyltin dilaurate [77-58-7], stannous octoate [1912-83-0], l,4-diazabicyclo[2.2.2]octane... [Pg.233]

Protein-Based Adhesives. Proteia-based adhesives are aormaHy used as stmctural adhesives they are all polyamino acids that are derived from blood, fish skin, caseia [9000-71 -9] soybeans, or animal hides, bones, and connective tissue (coUagen). Setting or cross-linking methods typically used are iasolubilization by means of hydrated lime and denaturation. Denaturation methods require energy which can come from heat, pressure, or radiation, as well as chemical denaturants such as carbon disulfide [75-15-0] or thiourea [62-56-6]. Complexiag salts such as those based upon cobalt, copper, or chromium have also been used. Formaldehyde and formaldehyde donors such as h exam ethyl en etetra am in e can be used to form cross-links. Removal of water from a proteia will also often denature the material. [Pg.234]

Production of pentaerythritol in the United States has been erratic. Demand decreased in 1975 because of an economic recession and grew only moderately to 1980 (69). The range of uses for pentaerythritol has grown rapidly in lubricants (qv), fire-retardant compositions, adhesives, and other formulations where the cross-linking capabiUties are of critical importance. [Pg.466]

In the other market areas, lead naphthenates are used on a limited basis in extreme pressure additives for lubricating oils and greases. Sodium and potassium naphthenates are used in emulsiftable oils, where they have the advantage over fatty acid soaps of having improved disinfectant properties. Catalyst uses include cobalt naphthenate as a cross-linking catalyst in adhesives (52) and manganese naphthenate as an oxidation catalyst (35). Metal naphthenates are also being used in the hydroconversion of heavy petroleum fractions (53,54) and bitumens (55). [Pg.512]

Polymers. AH nitro alcohols are sources of formaldehyde for cross-linking in polymers of urea, melamine, phenols, resorcinol, etc (see Amino RESINS AND PLASTICS). Nitrodiols and 2-hydroxymethyl-2-nitro-l,3-propanediol can be used as polyols to form polyester or polyurethane products (see Polyesters Urethane polymers). 2-Methyl-2-nitro-l-propanol is used in tires to promote the adhesion of mbber to tire cord (qv). Nitro alcohols are used as hardening agents in photographic processes, and 2-hydroxymethyl-2-nitro-l,3-propanediol is a cross-linking agent for starch adhesives, polyamides, urea resins, or wool, and in tanning operations (17—25). Wrinkle-resistant fabric with reduced free formaldehyde content is obtained by treatment with... [Pg.61]

Neoprene—phenohc contact adhesives, known for thein high green strength and peel values, contain a resole-type resin prepared from 4-/-butylphenol. The alkyl group increases compatibiHty and reduces cross-linking. This resin reacts or complexes with the metal oxide, eg, MgO, contained in the formulation, and increases the cohesive strength of the adhesive. In fact, the reactivity with MgO is frequently measured to determine the effectiveness of heat-reactive phenoHcs in the formulation. [Pg.303]

Because the heat distortion temperature of cured epoxy resins (qv) increases with the functionality of the curing agents, pyromellitic dianhydride is used to cross-link epoxy resins for elevated temperature service. The dianhydride may be added as a dispersion of micropulverized powder in liquid epoxy resin or as a glycol adduct (158). Such epoxies may be used as an insulating layer in printed circuit boards to improve heat resistance (159). Other uses include inhibition of corrosion (160,161), hot melt traffic paints (162), azo pigments (163), adhesives (164), and photoresist compounds (165). [Pg.500]


See other pages where Cross-linking adhesives is mentioned: [Pg.380]    [Pg.380]    [Pg.994]    [Pg.216]    [Pg.8491]    [Pg.380]    [Pg.380]    [Pg.994]    [Pg.216]    [Pg.8491]    [Pg.23]    [Pg.2564]    [Pg.2807]    [Pg.114]    [Pg.132]    [Pg.178]    [Pg.191]    [Pg.231]    [Pg.233]    [Pg.233]    [Pg.233]    [Pg.234]    [Pg.234]    [Pg.235]    [Pg.235]    [Pg.377]    [Pg.208]    [Pg.374]    [Pg.27]    [Pg.28]    [Pg.93]    [Pg.153]    [Pg.375]    [Pg.518]    [Pg.10]    [Pg.303]    [Pg.306]    [Pg.307]    [Pg.394]   
See also in sourсe #XX -- [ Pg.186 ]




SEARCH



Cross-linked adhesive

Cross-linked lignin adhesives

Cross-linking resin adhesion

© 2024 chempedia.info