Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reversible adhesion

Reversibility. The code of ethics generally followed by conservators (4) says that, wherever practical, any work done on an artifact should be reversible. Succeeding generations of conservators should be able to undo that work to correct mistakes, make new or improved repairs, etc. In the case of adhesives, reversibility means being able to unglue the joint with a minimum of damage to the artifact. [Pg.384]

Liu, D. B. Xie, Y. Y Shao, H. W. Jiang, X. Y. Using azobenzene-embedded self-assembled monolayers to photochemically control cell adhesion reversibly. Angew. Chem. Int. Ed. 2009, 48, 4406-4408. [Pg.421]

Release agents adhesives Reversible resins, aqueous adhesives thickeners, binders, coatings Reversible resins, adhesives, thickeners, fire extinguisher additive... [Pg.590]

For the highest viscosity adhesives reverse roll applicators can he used. Here the adhesive is pumped into the nip of the applicator rollers and the adherend to he coated is passed between a pressure roller and the metering roller. This allows an accurate coating of adhesive to he applied to the substrate. [Pg.291]

Testing of Painted Products. The enhancement of paint adhesion is one of the principal functions of conversion coating (20—22). A group of tests based on product deformation is used to test the painted product. The appHance and cod-coating industries use the mandrel bend, the cross-hatch adhesion test, and the direct and reverse impact tests. Adhesion after a water soak is judged using a cross-hatch test performed on the exposed surface. [Pg.223]

Reverse cleaners operate on the same principles as forward cleaners (20). Contaminants less dense than water migrate toward the center of the cleaner and exit as a separate (reject) stream from the pulp slurry. Reverse cleaners are used to remove adhesive and plastic particles as well as paper filler particles and lightweight particles formed from paper coatings. [Pg.8]

Low viscosity cellulose propionate butyrate esters containing 3—5% butyryl, 40—50% propionyl, and 2—3% hydroxyl groups have excellent compatibihty with oil-modified alkyd resins (qv) and are used in wood furniture coatings (155). Acetate butyrate esters have been used in such varied apphcations as hot-melt adhesive formulations (156), electrostatically spray-coated powders for fusible, non-cratering coatings on metal surfaces (157—159), contact lenses (qv) with improved oxygen permeabiUty and excellent wear characteristics (160—162), and as reverse-osmosis membranes for desalination of water (163). [Pg.260]

Because of increased production and the lower cost of raw material, thermoplastic elastomeric materials are a significant and growing part of the total polymers market. World consumption in 1995 is estimated to approach 1,000,000 metric tons (3). However, because the melt to soHd transition is reversible, some properties of thermoplastic elastomers, eg, compression set, solvent resistance, and resistance to deformation at high temperatures, are usually not as good as those of the conventional vulcanized mbbers. AppHcations of thermoplastic elastomers are, therefore, in areas where these properties are less important, eg, footwear, wine insulation, adhesives, polymer blending, and not in areas such as automobile tires. [Pg.11]

The van der Waals and other non-covalent interactions are universally present in any adhesive bond, and the contribution of these forces is quantified in terms of two material properties, namely, the surface and interfacial energies. The surface and interfacial energies are macroscopic intrinsic material properties. The surface energy of a material, y, is the energy required to create a unit area of the surface of a material in a thermodynamically reversible manner. As per the definition of Dupre [14], the surface and interfacial properties determine the intrinsic or thermodynamic work of adhesion, W, of an interface. For two identical surfaces in contact ... [Pg.77]

G() is related to the reversible work of adhesion obtained using contact angle measurements, but in general is greater than W. This is because once an interface is formed and the adhesive solidifies, strain energy is required to mechanically disrupt the interface. This strain energy arises because of the physical connection between the attachment sites between the adhesive and the substrate and the connectivity between this interface and the adhesive bulk. [Pg.449]

W. quantifies the specific, discrete interactions that exist between a wetting liquid and a substrate. These interactions may be Van der Waals, acid-base, or covalent. The reversible work of adhesion is the product of the areal density of these interaction sites (or attachment points) and the energy per attachment point ... [Pg.449]

This interaction energy is reversible because removal of the wetting liquid from the surface only requires the disruption of these interaction sites. Solidification of the liquid into an adhesive changes the requirements for dewetting, however. [Pg.450]

Eqs. 1-5 hold whether failure is interfacial or cohesive within the adhesive. Furthermore, Eq. 5 shows that the reversible work of adhesion directly controls the fracture energy of an adhesive joint, even if failure occurs far from the interface. This is demonstrated in Table 5, which shows the static toughness of a series of wedge test specimens with a range of adherend surface treatments. All of these samples failed cohesively within the resin, yet show a range of static toughness values of over 600%. [Pg.450]

PDMS based siloxane polymers wet and spread easily on most surfaces as their surface tensions are less than the critical surface tensions of most substrates. This thermodynamically driven property ensures that surface irregularities and pores are filled with adhesive, giving an interfacial phase that is continuous and without voids. The gas permeability of the silicone will allow any gases trapped at the interface to be displaced. Thus, maximum van der Waals and London dispersion intermolecular interactions are obtained at the silicone-substrate interface. It must be noted that suitable liquids reaching the adhesive-substrate interface would immediately interfere with these intermolecular interactions and displace the adhesive from the surface. For example, a study that involved curing a one-part alkoxy terminated silicone adhesive against a wafer of alumina, has shown that water will theoretically displace the cured silicone from the surface of the wafer if physisorption was the sole interaction between the surfaces [38]. Moreover, all these low energy bonds would be thermally sensitive and reversible. [Pg.689]

The mechanism of chemical adhesion is probably best studied and demonstrated by the use of silanes as adhesion promoters. However, it must be emphasized that the formation of chemical bonds may not be the sole mechanism leading to adhesion. Details of the chemical bonding theory along with other more complex theories that particularly apply to silanes have been reviewed [48,63]. These are the Deformable Layer Hypothesis where the interfacial region allows stress relaxation to occur, the Restrained Layer Hypothesis in which an interphase of intermediate modulus is required for stress transfer, the Reversible Hydrolytic Bonding mechanism which combines the chemical bonding concept with stress relaxation through reversible hydrolysis and condensation reactions. [Pg.696]

Block copolymers can contain crystalline or amorphous hard blocks. Examples of crystalline block copolymers are polyurethanes (e.g. B.F. Goodrich s Estane line), polyether esters (e.g. Dupont s Hytrel polymers), polyether amides (e.g. Atofina s Pebax grades). Polyurethanes have enjoyed limited utility due to their relatively low thermal stability use temperatures must be kept below 275°F, due to the reversibility of the urethane linkage. Recently, polyurethanes with stability at 350°F for nearly 100 h have been claimed [2]. Polyether esters and polyether amides have been explored for PSA applications where their heat and plasticizer resistance is a benefit [3]. However, the high price of these materials and their multiblock architecture have limited their use. All of these crystalline block copolymers consist of multiblocks with relatively short, amorphous, polyether or polyester mid-blocks. Consequently they can not be diluted as extensively with tackifiers and diluents as styrenic triblock copolymers. Thereby it is more difficult to obtain strong, yet soft adhesives — the primary goals of adding rubber to hot melts. [Pg.713]

BMI also reacts with dienes to form Diels-Alder adducts [12]. When BMI reacts with a a,(n-biscyclopentadienyl compound or other bis-diene resin, the bis-maleimide chain is extended by the Diels-Alder reaction. Bis-maleimide, chain extended with bis-diene, is not used in adhesives. However, as the Diels-Alder reaction is reversible, there may be a possibility of recyclability of the cured resin by depolymerization of the backbone (Fig. 6). [Pg.815]


See other pages where Reversible adhesion is mentioned: [Pg.402]    [Pg.313]    [Pg.60]    [Pg.97]    [Pg.402]    [Pg.313]    [Pg.60]    [Pg.97]    [Pg.454]    [Pg.457]    [Pg.475]    [Pg.1696]    [Pg.39]    [Pg.98]    [Pg.152]    [Pg.471]    [Pg.122]    [Pg.7]    [Pg.102]    [Pg.83]    [Pg.156]    [Pg.332]    [Pg.7]    [Pg.90]    [Pg.91]    [Pg.111]    [Pg.126]    [Pg.419]    [Pg.448]    [Pg.488]    [Pg.592]    [Pg.684]    [Pg.699]    [Pg.792]    [Pg.820]    [Pg.975]   
See also in sourсe #XX -- [ Pg.478 ]




SEARCH



Adhesion durability reversibility

Adhesion promoters reversible

Adhesion reverse roll coating

Adhesion reversibility

Adhesion reversibility

Adhesion, reversible work

Reversal adhesive

Reversal adhesive

Reversibility adhesives

Reversibility adhesives

Reversible work of adhesion

© 2024 chempedia.info