Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene butadiene-acrylonitrile

Later on, acrylonitrile-butadiene-polystyrene (ABS) polymer was used as the support based on the same microencapsulation technique, and several alkenes. [Pg.17]

In the case of poly(vinyl chloride) plastics, the FWA is mixed dry with the PVC powder before processing or dissolved in the plasticising agent (see Vinyl polymers). Polystyrene, acrylonitrile—butadiene—styrene (ABS), and polyolefin granulates are powdered with FWA prior to extmsion (2,78) (see... [Pg.120]

Over 70% of the total volume of thermoplastics is accounted for by the commodity resins polyethylene, polypropylene, polystyrene, and poly(vinyl chloride) (PVC) (1) (see Olefin polymers Styrene plastics Vinyl polymers). They are made in a variety of grades and because of their low cost are the first choice for a variety of appHcations. Next in performance and in cost are acryhcs, ceUulosics, and acrylonitrile—butadiene—styrene (ABS) terpolymers (see... [Pg.135]

Styrene [100-42-5] (phenylethene, viaylben2ene, phenylethylene, styrol, cinnamene), CgH5CH=CH2, is the simplest and by far the most important member of a series of aromatic monomers. Also known commercially as styrene monomer (SM), styrene is produced in large quantities for polymerization. It is a versatile monomer extensively used for the manufacture of plastics, including crystalline polystyrene, mbber-modifted impact polystyrene, expandable polystyrene, acrylonitrile—butadiene—styrene copolymer (ABS), styrene—acrylonitrile resins (SAN), styrene—butadiene latex, styrene—butadiene mbber (qv) (SBR), and unsaturated polyester resins (see Acrylonithile polya rs Styrene plastics). [Pg.476]

Property Polystyrene (PS) Poly(styrene-i) (j-acrjio-nitrile ) (SAN) Glass-fil led PS High impact PS HIPS Acrylonitrile— butadiene—styrene terpolymer (ABS) Type 1 Type 2 Standard ABS Super ABS... [Pg.503]

Two commercially significant graft copolymers are acrylonitrile—butadiene—styrene (ABS) resins and impact polystyrene (IPS) plastics. Both of these families of materials were once simple mechanical polymer blends, but today such compositions are generally graft copolymers or blends of graft copolymers and homopolymers. [Pg.186]

This comprehensive article supplies details of a new catalytic process for the degradation of municipal waste plastics in a glass reactor. The degradation of plastics was carried out at atmospheric pressure and 410 degrees C in batch and continuous feed operation. The waste plastics and simulated mixed plastics are composed of polyethylene, polypropylene, polystyrene, polyvinyl chloride, acrylonitrile butadiene styrene, and polyethylene terephthalate. In the study, the degradation rate and yield of fuel oil recovery promoted by the use of silica alumina catalysts are compared with the non-catalytic thermal degradation. 9 refs. lAPAN... [Pg.65]

We have considerable latitude when it comes to choosing the chemical composition of rubber toughened polystyrene. Suitable unsaturated rubbers include styrene-butadiene copolymers, cis 1,4 polybutadiene, and ethylene-propylene-diene copolymers. Acrylonitrile-butadiene-styrene is a more complex type of block copolymer. It is made by swelling polybutadiene with styrene and acrylonitrile, then initiating copolymerization. This typically takes place in an emulsion polymerization process. [Pg.336]

Many common polymers, polymeric additives and lubricants oxidise so rapidly after impact in liquid oxygen that they are hazardous. Of those tested, only acrylonitrile-butadiene, poly(cyanoethylsiloxane), poly(dimethylsiloxane) and polystyrene exploded after impact of 6.8-95 J intensity (5-70 ft.lbf). All plasticisers (except dibutyl sebacate) and antioxidants examined were very reactive. A theoretical treatment of rates of energy absorption and transfer is included [1], Previously, many resins and lubricants had been examined similarly, and 35 were found acceptable in liquid oxygen systems [2],... [Pg.1857]

An important class of copolymers made by chain copolymerisation is graft copolymers, synthesized in order to toughen brittle materials through inclusion of a rubber phase. Examples are the cases of styrenic copolymers called "HIPS" for High-Impact Polystyrene and ABS for Acrylonitrile-Butadiene-Styrene. Both are synthesized in two steps. [Pg.51]

In order to determine the sources of contamination, some water samples, including wastewaters and effluents from different industries were also sampled. Along the Cinca River and in the industrial area of Monzon, industrial effluents from two different industries were selected the first one produced EPS (Expandable polystyrene) treated with flame retardants and ABS (Acrylonitrile-butadiene-styrene), and the second one produced PVC (Polyvinyl chloride). As regards the Vero River, three industries were sampled the first one, a textile industry which produced polyester fibers treated with flame retardants, the second one produced epoxy... [Pg.170]

Most plastics e.g. polyolefins and polystyrenes and their derivatives such as ABS (acrylonitrile-butadiene-styrene) and SAN (styrene-acrylonitrile) are supplied by the manufacturers in ready-to-use form with most of the above-mentioned stabilizers or simply need to be additionally stabilized with other additives, e.g. antistatic agents and HALS stabilizers, as required. On the other hand, in the case of other materials (e.g. PVC) it is the end user who adds the additives, pigments or preparations. This is normally done on fluid or high-speed mixers, although in the past gravity mixers or tumble mixers were also used. The mixture is then homogenized on mixing rolls, kneaders, planetary extruders or twin-screw kneaders and further processed. [Pg.161]

Fig. 1. Process flow sheet for the continuous conversion of latex in a counterrotating, tangential twin-screw extruder as it might be arranged for the production of acrylonitrile-butadiene-styrene polymer (Nichols and Kheradi, 1982). Polystyrene (or styrene-acrylonitrile) melt is fed upstream of the reactor zone where the coagulation reaction takes place. Washing (countercurrent liquid-liquid extraction) and solids separation are conducted in zones immediately downstream of the reactor zone. The remainii zones are reserved for devolatilization and pumping. Fig. 1. Process flow sheet for the continuous conversion of latex in a counterrotating, tangential twin-screw extruder as it might be arranged for the production of acrylonitrile-butadiene-styrene polymer (Nichols and Kheradi, 1982). Polystyrene (or styrene-acrylonitrile) melt is fed upstream of the reactor zone where the coagulation reaction takes place. Washing (countercurrent liquid-liquid extraction) and solids separation are conducted in zones immediately downstream of the reactor zone. The remainii zones are reserved for devolatilization and pumping.
Uses. Plastics and synthetic rubber are the major uses for styrene. They account for the exponential growth from a few million pounds per year in 1938 to more than 8 billion pounds today. The numerous plastics include polystyrene, styrenated polyesters, acrylonitrile-butadiene-styrene (ABS), styrene-acrylonitrile (SAN), and styrene-butadiene (SB). Styrene-butadiene rubber (SBR) was a landmark chemical achievement when it was comrner-cialized during World War II. The styrene derivatives are found everywhere—in food-grade film, coys, construction pipe, foam, boats, latex paints, tires, luggage, and furniture. [Pg.131]

Emulsion polymerization is used for 10-15% of global polymer production, including such industrially important polymers as poly(acrylonitrile-butadiene-styrene) (ABS), polystyrene, poly(methyl methacrylate), and poly (vinyl acetate) [196]. These are made from aqueous solutions with high concentrations of suspended solids. The important components have unsaturated carbon-carbon double bonds. Raman spectroscopy is well-suited to address these challenges, though the heterogeneity of the mixture sometimes presents challenges. New sample interfaces, such as WAI and transmission mode, that have shown promise in pharmaceutical suspensions are anticipated to help here also. [Pg.222]

Polycarbonate is blended with a number of polymers including PET, PBT, acrylonitrile-butadiene-styrene terpolymer (ABS) rubber, and styrene-maleic anhydride (SMA) copolymer. The blends have lower costs compared to polycarbonate and, in addition, show some property improvement. PET and PBT impart better chemical resistance and processability, ABS imparts improved processability, and SMA imparts better retention of properties on aging at high temperature. Poly(phenylene oxide) blended with high-impact polystyrene (HIPS) (polybutadiene-gra/f-polystyrene) has improved toughness and processability. The impact strength of polyamides is improved by blending with an ethylene copolymer or ABS rubber. [Pg.143]

PS (polystyrene), PVC [poly(vinyl chloride)], PC (bisphenol A polycarbonate) PMMA [poly (methyl methacrylate)], PB (polybutadiene), SAN (styrene-acrylonitrile copolymer),NBR (acrylonitrile-butadiene rubber), PPE (polyphenylene ether), SBR (styrene-butadiene rubber)... [Pg.366]

The term graft copolymer is used to describe copolymers with long sequences of another monomer (comonomer) as branches on the main polymer chain. Most commercial varieties of high-impact polystyrene (HIP) and copolymers of acrylonitrile, butadiene, and styrene (ABS) are graft copolymen in which the main polymer chain is polybutadiene and the branches are styrene, or styrene and acrylonitrile. Figure 1.12 shows various types of copolymers. [Pg.11]

Other compatible commercial systems are as follows polystyrene (PS) and polyphenylene oxide (PPO) polyvinyl chloride (PVC) and nylon 66 PVC and acrylonitrile-butadiene rubber (NBR) and PS and polycarbonate (PC) (up to 60% PC). [Pg.97]

Plastics Several types of plastics, such as polystyrene, high density polyethylene (HDPE), acrylonitrile butadiene styrene (ABS), resin/... [Pg.168]

Butadiene is used primarily in the production of synthetic rubbers, including styrene-butadiene rubber (SBR), polybutadiene nibber (BR), styrene-butadiene latex (SBL), chloroprene rubber (CR) and nitrile rubber (NR). Important plastics containing butadiene as a monomeric component are shock-resistant polystyrene, a two-phase system consisting of polystyrene and polybutadiene ABS polymers consisting of acrylonitrile, butadiene and styrene and a copolymer of methyl methacrylate, butadiene and styrene (MBS), which is used as a modifier for poly(vinyl chloride). It is also used as an intermediate in the production of chloroprene, adiponitrile and other basic petrochemicals. The worldwide use pattern for butadiene in 1981 was as follows (%) SBR + SBL, 56 BR, 22 CR, 6 NR, 4 ABS, 4 hexamethylenediamine, 4 other, 4. The use pattern for butadiene in the United States in 1995 was (%) SBR, 31 BR, 24 SBL, 13 CR, 4 ABS, 5 NR, 2 adiponitrile, 12 and other, 9 (Anon., 1996b). [Pg.114]

B.J. Jody, B. Arman, D.E. Karvelas, J.A. Pomykala, Jr., and E.J. Daniels, Method for the separation of high impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS) plastics, US Patent 5 653867, assigned to The University of Chicago (Chicago, IL), August 5,1997. [Pg.295]

The insoluble material is assumed to be the graft copolymer and this is verified by infrared spectroscopy. For grafting onto the butadiene portion of a copolymer, the C-H out-of-plane bending vibrations as well as the olefin C-H stretching vibration are most useful. The graft copolymer of acrylonitrile onto polystyrene cannot be analyzed by infrared spectroscopy since the only change would be in the C-H overtone region and these bands are too weak to permit interpretation. [Pg.112]

The principal kinds of thermoplastic resins include (1) acrylonitrile-butadiene-styrene (ABS) resins (2) acetals (3) acrylics (4) cellulosics (5) chlorinated polyelliers (6) fluorocarbons, sucli as polytelra-fluorclliy lene (TFE), polychlorotrifluoroethylene (CTFE), and fluorinated ethylene propylene (FEP) (7) nylons (polyamides) (8) polycarbonates (9) poly elliylenes (including copolymers) (10) polypropylene (including copolymers) ( ll) polystyrenes and (12) vinyls (polyvinyl chloride). The principal kinds of thermosetting resins include (1) alkyds (2) allylics (3) die aminos (melamine and urea) (4) epoxies (5) phenolics (6) polyesters (7) silicones and (8) urethanes,... [Pg.1316]

The polymers described above have been chemically pure, although physically helerodisperse. It is oflen possible lo combine two or more of these monomers in the same molecule to form a copolymer. This process produces still further modification of molecular properties and, in turn, modification of the physical properties of file product. Many commercial polymers are copolymers because of the blending of properties achieved in this way. For example, one of the important new polymers of the past ten years has been the family of copolymers of acrylonitrile, butadiene and styrene, commonly called ABS resins. The production of these materials has grown rapidly in a short period of time because of their combination of dimensional stability and high impact resistance. These properties are related to the impact resistance of acrylonitrile-butadiene rubber and the dimensional stability of polystyrene, which are joined in the same molecule. [Pg.1350]

Copolymers show chemical resistance generally similar to that of polystyrene and terpolvmers similar to that of ABS (acrylonitrile-butadiene-styrene). Neither type is recommended for use in strongly alkaline environments. All impact versions have good natural color and products are available in a wide range of colors. Copolymer crystal grades have good clarity and gloss. [Pg.1557]

Beginning in the late forties, copolymers were fractionated by adsorption chromatography poly (butadiene-co-styrene)32 34), poly(butadiene-co-acrylonitrile)32), polystyrene- -vinyl acetate)35), poly(styrene-h-ethylene oxide)36) and poly(styrene-co-acrylonitrile) 37). HPLC adsorption chromatography was first applied to copolymer analysis by Teramachi et al. in 1979 38>. [Pg.174]

Order-disorder transitions and spinodals were computed for linear multi block copolymers with differing sequence distributions by Fredrickson et al. (1992). This type of copolymer includes polyurethanes, styrene-butadiene rubber, high impact polystyrene (HIPS) and acrylonitrile-butadiene-styrene (ABS) block copolymers. Thus the theory is applicable to a broad range of industrial thermoplastic elastomers and polyurethanes. The parameter... [Pg.79]

As of 1992, the first specialty platable plastic, acrylonitrile—butadiene—styrene (ABS) terpolymer (see Acrylonitrile polymers, abs resins), is used in over 90% of POP applications. Other platable plastics include poly(phenylene ether) (see Polyethers), nylon (see Polyamides), polysulfone (see Polymers containing sulfur), polypropylene, polycarbonate, phenolics (see Pphenolic resins), polycarbonate—ABS alloys, polyesters (qv), foamed polystyrene (see Styrene plastics), and other foamed plastics (qv). [Pg.109]

The growth of these materials is reflected in the number of polymers which are being glass reinforced. These include polypropylene, polystyrene, styrene acrylonitrile, nylon, polyethylene, acrylonitrile-butadiene-styrene, modified polyphenylene oxide, polycarbonate, acetal, polysulfone, polyurethane, poly (vinyl chloride), and polyester. In addition, the reinforced thermoplastics available now include long-fiber compounds, short-fiber compounds, super concentrates for economy, a combination of long and short fibers, and blends of polymer and fibrous glass. [Pg.465]


See other pages where Polystyrene butadiene-acrylonitrile is mentioned: [Pg.1054]    [Pg.1055]    [Pg.134]    [Pg.37]    [Pg.327]    [Pg.309]    [Pg.541]    [Pg.673]    [Pg.341]    [Pg.219]    [Pg.334]    [Pg.1323]    [Pg.1324]    [Pg.132]    [Pg.475]    [Pg.267]    [Pg.37]    [Pg.1021]   


SEARCH



Acrylonitrile-butadiene-polystyrene polymer

Butadiene-acrylonitrile

Polystyrene, copolymers with acrylonitrile-butadiene

Polystyrene-acrylonitrile

Polystyrene-butadiene

© 2024 chempedia.info