Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers industrially important

In this section we examine some examples of cross-linked step-growth polymers. The systems we shall describe are thermosetting polymers of considerable industrial importance. The chemistry of these polymerization reactions is more complex than the hypothetical AB reactions of our models. We choose to describe these commercial polymers rather than model systems which might conform better to the theoretical developments of the last section both because of the importance of these materials and because the theoretical concepts provide a framework for understanding more complex systems, even if they are not quantitatively successful. [Pg.323]

Many industrially important fluids cannot be described in simple terms. Viscoelastic fluids are prominent offenders. These fluids exhibit memory, flowing when subjected to a stress, but recovering part of their deformation when the stress is removed. Polymer melts and flour dough are typical examples. Both the shear stresses and the normal stresses depend on the history of the fluid. Even the simplest constitutive equations are complex, as exemplified by the Oldroyd expression for shear stress at low shear rates ... [Pg.96]

Stmctures with the widest temperature range of demonstrated stabiUty have fluorine in the gamma position relative to siUcon (or further removed), as in CF2CH2CH2SiIlR R. Longer hydrocarbon chains, with or without hetero atoms, are feasible, but oxidative stabiUty is compromised and such materials are generally disfavored. Poly(3,3,3-trifluoropropyl)methylsiloxane [26702-40-9] demonstrates this stmctural principle. This polymer is one key member of the industrially important family of fluorosiUcone materials. [Pg.399]

Starch acetates may have low or high DS. The industrial importance of low DS acetates results from their abiUty to stabilize aqueous polymer sols. Low DS acetates inhibit association of amylose polymers and reduce the association of the longer outer chains of amylopectin. These properties are important in food appHcations. Highly derivatized starches (DS 2—3) are useful because of their solubiHty in organic solvents and abiHty to form films and fibers. [Pg.346]

The plastics industry was launched nearly 150 years ago with the production of certain derivatives of cellulose. However, its real emergence as a growth industry of immense proportions and importance has occurred since World War II with the sustained strong growth of thermoplastics and specialty elastomers. The importance of the polymers industry in modern society is underscored by the myriad of uses already developed for these materials, with more being developed almost daily. Although there are a multitude of polymers that are derived from hydrocarbons, we will only briefly discuss the more common thermoplastics that are made from relatively simple monomers from petroleum. [Pg.233]

Polyacrylates are an industrially important class of polymers. The name polyacrylate is variously used to refer to polymers of acrylate esters [e.g., poly(methyl methacrylate)] as well as polymers of acrylic acids [e.g., poly(meth-acrylic acid)]. Because the former is organic soluble while the latter is not, chromatographic analysis of these two requires quite different conditions. This chapter discusses both types of polymers, separating their consideration when necessary. We will refer to both types of polymers as polyacrylates, letting the context indicate whether we are referring to an ester or to an acid polymer. [Pg.539]

Ethene and propene are produced as bulk feedstocks for the chemical (polymer) industry and therefore their purities are important parameters. In particular, H2S and COS are compounds which may not only cause corrosion problems in processing equipment, but also may have detrimental effects on the catalysts in use. Eurthermore, air pollution regulations issued by, among others, the US Environmental Protection Agency (EPA) require that most of the sulfur gases should be removed in order to minimize Sulfur emissions into the atmosphere. Therefore, these compounds have to be determined to the ppb level. [Pg.381]

UV absorbers have been found to be quite effective for stabilization of polymers and are very much in demand. They function by the absorption and harmless dissipation of the sunlight or UV-rich artificial radiation, which would have otherwise initiated degradation of a polymer material. Meyer and Geurhart reported, for the first time in 1945 [10], the use of UV absorber in a polymer. They found that the outdoor life of cellulose acetate film was greatly prolonged by adding phenyl salicylate (salol) [10]. After that, resorcinol monobenzoate, a much more effective absorber, was introduced in 1951 [11] for stabilization of PP, but salol continued to be the only important commercial stabilizer for several years. The 2,4-dihydroxybenzophenone was marketed in 1953, followed shortly by 2-hydroxy-4-methoxybenzophenone and other derivatives. Of the more commonly known UV absorbers, the 2-hydroxybenzophenones, 2-hy-droxy-phenyl-triazines, derivatives of phenol salicylates, its metal chelates, and hindered amine light stabilizers (HALS) are widely used in the polymer industry. [Pg.400]

There is a good amount of data on the transformations of natural polymers, but the literature concerning chemical modifications of natural monomers is rather scanty. However, there are a few natural monomers that have found applications. The monomers in these cases are either modified into other suitable monomers of industrial importance or are polymerized directly into polymers. A few examples are given below for illustration. [Pg.418]

Vinyl chloride is a reactive gas soluble in alcohol hut slightly soluble in water. It is the most important vinyl monomer in the polymer industry. The U.S. production of vinyl chloride, the 16th highest-volume chemical, was approximately 14.8 billion pounds in 1994. [Pg.202]

Reactions of this type are quite popular and widely used to introduce hydrophilic and ionogenic groups into linear polymers as well as directly into polymer networks. These reactions include hydrolysis (PAAm, PAAc and their analogs from PAN, PVA from poly (vinyl acetate), oxyethylation and oxymethylation of starch and cellulose, sulfurization, and other reactions. These processes are of industrial importance, well studied and widely reviewed. [Pg.110]

Functionalized polyethylene would be of great industrial importance, and if synthetic methods to control the microstructure of functionalized polymers using transition-metal-based catalysis are developed, it would significantly broaden the utility and range of properties of this class of polymers. Recent progress in the field of late transition metal chemistry, such as Brookliart s use of nickel-based diimine catalysts, has enabled the copolymerization of ethylene with functional a-olefins.29 However, these systems incorporate functionalized olefins randomly and with limited quantity (mol percent) into the polymer backbone. [Pg.459]

Other commercially relevant monomers have also been modeled in this study, including acrylates, styrene, and vinyl chloride.55 Symmetrical a,dienes substituted with the appropriate pendant functional group are polymerized via ADMET and utilized to model ethylene-styrene, ethylene-vinyl chloride, and ethylene-methyl acrylate copolymers. Since these models have perfect microstructure repeat units, they are a useful tool to study the effects of the functionality on the physical properties of these industrially important materials. The polymers produced have molecular weights in the range of 20,000-60,000, well within the range necessary to possess similar properties to commercial high-molecular-weight material. [Pg.460]

A most important class of pump for dealing with highly viscous material is represented by the screw extruder used in the polymer industry. Extruders find their main application in the manufacture of simple and complex sections (rods, tubes, headings, curtain rails, rainwater gutterings and a multitude of other shapes). However, the shape of section produced in a given material is dependent only on the profile of the hole through which the fluid is pushed just before it cools and solidifies. The screw pump is of more general application and will be considered first. [Pg.327]

Although, the enzymatic reaction of esters with amines or ammonia have been well documented, the corresponding aminolysis with carboxylic acids are rarer, because of the tendency of the reactants to form unreactive salts. For this reason some different strategies have been used to avoid this problem. Normally, this reaction has been used for the preparation of amides of industrial interest, for instance, one of the most important amides used in the polymer industry like oleamide has been produced by enzymatic amidation of oleic acid with ammonia and CALB in different organic solvents [10]. [Pg.174]

These results clearly show that these novel catalysts exhibit low metathesis activity at the studied temperatures and therefore can operate as dormant catalysts. This behavior is very important in the polymer industry. [Pg.222]

Polymer/additive analysis is a typical industrial analytical problem, and indeed not one of the easiest or least important ones. Requirements set to industrial analytical expertise vary from new analytical approaches for product innovation, to service-oriented problem solving (combination of analytical expertise and specific product knowledge), and cost-efficient analysis of a few grades (plant service) (Scheme 10.1). Reported prospects set the instrumental trends in the polymer industry (Table 10.17). For traditional quality laboratories this translates into ... [Pg.725]

Pyrrolidones fit well into the bio-refinery concept since they may be produced in a scheme beginning with the fermentation of a portion of the bio-refineiy s sugar product into succinate. Pyrrolidones are a class of industrially important chemicals with a variety of uses including polymer intermediates, cleaners, and green solvents which can replace hazardous chlorinated compounds. [Pg.145]

Transition from liquid behavior to solid behavior has been reported with fine particle suspensions with increased filler content in both Newtonian and non-Newtonian liquids. Industrially important classes are rubber-modified polymer melts (small rubber particles embedded in a polymer melt), e.g. ABS (acrylo-nitrile-butadiene-styrene) or HIPS (high-impact polystyrene) and fiber-reinforced polymers. Another interesting suspension is present in plasticized polyvinylchloride (PVC) at low temperatures, when suspended PVC particles are formed in the melt [96], The transition becomes evident in the following... [Pg.206]

Dienes bonded to silicones to give products stable to hydrolysis are available in a wide variety of combinations, from the distillable l,3-bis(isoprenyl)-l,l,3,3-tetramethyldisiloxane to high polymers with dozens of diene groups attached [23], Diels-Alder cycloadditions may be performed with dieno-philes. Maleic anhydride adds almost quantitatively to the conjugated diene system, giving easy access to a siloxane species of considerable industrial importance [24]. [Pg.259]

Precipitation polymerizations dominated the early work which aimed at preparing industrially important hydrocarbon polymers in C02. In 1968, Hagiwara and coworkers explored the polymerization of ethylene in C02 using both gamma radiation and AIBN as free radical initiators [79]. Reactions were conducted at pressures of 440 bar and over the temperature range of 20-45 °C. [Pg.115]


See other pages where Polymers industrially important is mentioned: [Pg.191]    [Pg.166]    [Pg.191]    [Pg.166]    [Pg.329]    [Pg.387]    [Pg.421]    [Pg.2513]    [Pg.428]    [Pg.332]    [Pg.394]    [Pg.87]    [Pg.450]    [Pg.14]    [Pg.105]    [Pg.649]    [Pg.301]    [Pg.191]    [Pg.113]    [Pg.10]    [Pg.317]    [Pg.201]    [Pg.76]    [Pg.143]    [Pg.213]    [Pg.586]    [Pg.828]    [Pg.337]    [Pg.32]    [Pg.171]    [Pg.466]    [Pg.109]   
See also in sourсe #XX -- [ Pg.396 ]




SEARCH



Industrial importance

Industrial polymers)

Polymer industry

Some Industrially Important Polymers

© 2024 chempedia.info