Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids solutions containing

I he methyl iodide is transferred quantitatively (by means of a stream of a carrier gas such as carbon dioxide) to an absorption vessel where it either reacts with alcoholic silver nitrate solution and is finally estimated gravimetrically as Agl, or it is absorbed in an acetic acid solution containing bromine. In the latter case, iodine monobromide is first formed, further oxidation yielding iodic acid, which on subsequent treatment with acid KI solution liberates iodine which is finally estimated with thiosulphate (c/. p. 501). The advantage of this latter method is that six times the original quantity of iodine is finally liberated. [Pg.497]

Tantalum is a gray, heavy, and very hard metal. When pure, it is ductile and can be drawn into fine wire, which is used as a filament for evaporating metals such as aluminum. Tantalum is almost completely immune to chemical attack at temperatures below ISOoC, and is attacked only by hydrofluoric acid, acidic solutions containing the fluoride ion, and free sulfur trioxide. Alkalis attack it only slowly. At high temperatures, tantalum becomes much more reactive. The element has a melting point exceeded only by tungsten and rhenium. Tantalum is used to make a variety... [Pg.132]

Solutions of Na2S203 are prepared from the pentahydrate and must be standardized before use. Standardization is accomplished by dissolving a carefully weighed portion of the primary standard KIO3 in an acidic solution containing an excess of KI. When acidified, the reaction between 103 and K... [Pg.344]

Processes for Triacetate. There are both batch and continuous process for triacetate. Many of the considerations and support faciUties for producing acetate apply to triacetate however, no acetyl hydrolysis is required. In the batch triacetate sulfuric acid process, however, a sulfate hydrolysis step (or desulfonation) is necessary. This is carried out by slow addition of a dilute aqueous acetic acid solution containing sodium or magnesium acetate (44,45) or triethanolamine (46) to neutrali2e the Hberated sulfuric acid. The cellulose triacetate product has a combined acetic acid content of 61.5%. [Pg.296]

Oxalates. Stable oxalates of Pu(III), Pu(IV), and Pu(VI) are known. However, only the Pu(III) and Pu(IV) oxalates are technologically important (30,147). Brilliant green plutonium(III) oxalate [56609-10-0] precipitates from nitric acid solutions containing Pu(III) ions upon addition of oxaUc acid or sodium oxalate. The composition of the precipitate isPu2(C20 2 10H2O. A homogeneous oxalate precipitation by hydrolysis of diethyl oxalate at... [Pg.204]

Tantalum is not resistant to substances that can react with the protective oxide layer. The most aggressive chemicals are hydrofluoric acid and acidic solutions containing fluoride. Fuming sulfuric acid, concentrated sulfuric acid above 175°C, and hot concentrated aLkaU solutions destroy the oxide layer and, therefore, cause the metal to corrode. In these cases, the corrosion process occurs because the passivating oxide layer is destroyed and the underlying tantalum reacts with even mild oxidising agents present in the system. [Pg.331]

Zirconium is readily attacked by acidic solutions containing fluorides. As Httle as 3 ppm flouride ion in 50% boiling sulfuric acid corrodes zirconium at 1.25 mm/yr. Solutions of ammonium hydrogen fluoride or potassium hydrogen fluoride have been used for pickling and electropolishing zirconium. Commercial pickling is conducted with nitric—hydrofluoric acid mixtures (see Metal surface treatments). [Pg.428]

Different polyamide fibers with varying affinities for anionic dyes are pretreated with aqueous acidic solution containing sulfated castor od to give uniform shade levels. Sulfated castor od is also used in compositions for treatment of fabrics, skins, and furs to clean and revive colors (115). [Pg.156]

Chromium is conventionally deposited from chromic acid solutions containing at least one anionic catalyst, which is usually the sulfate ion. The weight ratio of chromic acid to catalyst is important and, for sulfate-cataly2ed solutions, is maintained about 100 1. Formulations and conditions for operating hard chromium plating solutions are shown in Table 5. [Pg.155]

The composition of this alloy (54% nickel, 15% molybdenum, 15% chromium, 5% tungsten and 5% iron) is less susceptible to intergranular corrosion at welds. The presence of chromium in this alloy gives it better resistance to oxidizing conditions than the nickel/molybdenum alloy, particularly for durability in wet chlorine and concentrated hypochlorite solutions, and has many applications in chlorination processes. In cases in which hydrochloric and sulfuric acid solutions contain oxidizing agents such as ferric and cupric ions, it is better to use the nickel/molybdenum/ chromium alloy than the nickel/molybdenum alloy. [Pg.75]

After the addition had been completed, the acidic solution containing p-acetylphenyldiazo-nium chloride formed in the above reaction was added dropwise with stirring to a mixture of 530 ml of glacial acetic acid and 530 ml of benzene which had been previously cooled, and the cooled solution saturated with sulfur dioxide and to which had been added 34 g of cupric chloride dihydrate. After the addition had been completed, the reaction mixture was stirred at about 40°C for three hours, and was then poured into 3,000 ml of an ice-water mixture. [Pg.17]

The acidic solution, containing the 2-(2-dimethylaminoethyl)-1- [l-(2-pyridyl)-ethyl] -indan-Tol is heated on the steam bath for thirty minutes to effect dehydration to the desired indene derivative. The solution is cooled, made strongly basic with an aqueous solution... [Pg.502]

As with most other metals, the anodic behaviour of nickel is influenced by the composition of the solution in which measurements are made, particularly if the solution is acidic. Acidic solutions containing d ions or certain sulphur compounds in particular have a pronounced influence both in increasing the rate of anodic dissolution in the active range and in preventing passivation, and in stimulating localised corrosion . Thiourea and some of its derivatives have a complex effect, acting either as anodic stimulators or inhibitors, depending on their concentration . [Pg.768]

In practice, pitting of nickel and nickel alloys may be encountered if the corrosive environment contains chloride or other aggressive ions and is more liable to develop in acidic than in neutral or alkaline solutions. In acidic solutions containing high concentrations of chloride, however, passivity is likely to break down completely and corrosion to proceed more or less uniformly over the surface. For this reason nickel and those nickel alloys which rely on passivity for their corrosion resistance are not resistant to HCl. [Pg.778]

Figure 4.35 illustrates the effect of temperature on the rate of development of pitting, measured as a corrosion current in an acidic solution containing Cl it is seen that quite small increments in temperature have large effects. The influence of temperature is of considerable significance when metals and alloys act as heat transfer surfaces and are hotter than the corrosive environment with which they are in contact. In these circumstances. [Pg.779]

All acids used are the most concentrated forms available. Solutions should be made up by using water or the acid solution containing most acid as the base to which other acids are added. All solutions should be mixed with care using cooling and continuous mixing. [Pg.303]

Coatings of tin produced from tin-containing aqueous solutions by chemical replacement may be used to provide special surface properties such as appearance or low friction, but protect from corrosion only in non-aggressive environments. Copper and brass may be tinned in alkaline cyanide solutions or in acid solutions containing organic addition agents such as thiourea. Steel may be first coated with copper and then treated... [Pg.500]

Acid treatments The principal acid processes were developed in the USA under the name Alodine, and are marketed in the UK as Alocrom and under other names. The original solutions were based on acid solutions containing phosphate, chromate and fluoride ions. Immersion for up to 5 min in the cold or warm solution leads to the deposition of a greenish film containing the phosphates of chromium and aluminium, and possibly some hexavalent chromate. The more recent Alocrom 1 200 process uses an acid solution containing chromate, fluoride and nitrate. Room-temperature immersion for 15 s to 3 min deposits golden-brown coatings which contain chromate as a major constituent. [Pg.724]

Blocking of reaction sites The interaction of adsorbed inhibitors with surface metal atoms may prevent these metal atoms from participating in either the anodic or cathodic reactions of corrosion. This simple blocking effect decreases the number of surface metal atoms at which these reactions can occur, and hence the rates of these reactions, in proportion to the extent of adsorption. The mechanisms of the reactions are not affected and the Tafel slopes of the polarisation curves remain unchanged. Behaviour of this type has been observed for iron in sulphuric acid solutions containing 2,6-dimethyl quinoline, /3-naphthoquinoline , or aliphatic sulphides . [Pg.811]

Tsikaeva et al. [290,291] investigated the Raman and IR absorption spectra of hydrofluoric acid solutions containing a wide range of concentrations of niobium, but no other additional cations. [Pg.127]

An acid-base titration is carried out by adding carefully measured amounts of a base solution to a known volume of the acid solution. The acid solution contains some substance that provides visual evidence of the magnitude of [H+]. The dye litmus is such a substance. As mentioned in Sections 11-2.1 and 11-2.2, litmus is red in solutions containing excess [H+]. Litmus is blue in... [Pg.189]

In some of the details which follow, reference is made to the addition of a buffer solution, and in all such cases, to ensure that the requisite buffering action is in fact achieved, it is necessary to make certain that the original solution has first been made almost neutral by the cautious addition of sodium hydroxide or ammonium hydroxide, or of dilute acid, before adding the buffer solution. When an acid solution containing a metallic ion is neutralised by the addition of alkali care must be taken to ensure that the metal hydroxide is not precipitated. [Pg.322]

Oxalates. Urea may be employed to raise the pH of an acid solution containing hydrogenoxalate ion HC2O4, thus affording a method for the slow generation of oxalate ion. Calcium oxalate may thus be precipitated in a dense form ... [Pg.426]

Beryllium is sometimes precipitated together with aluminium hydroxide, which it resembles in many respects. Separation from aluminium (and also from iron) may be effected by means of oxine. An acetic (ethanoic) acid solution containing ammonium acetate is used the aluminium and iron are precipitated as oxinates, and the beryllium in the filtrate is then precipitated with ammonia solution. Phosphate must be absent in the initial precipitation of beryllium and aluminium hydroxides. [Pg.449]

Discussion. When potassium iodide solution is added to a dilute sulphuric acid solution containing a small amount of bismuth a yellow to orange coloration, due to the formation of an iodobismuthate(III) ion, is produced. The colour intensity increases with iodide concentration up to about 1 per cent potassium iodide and then remains practically constant. [Pg.684]

Procedure. Take an aliquot portion of the unknown slightly acid solution containing 0.1-0.5 mg iron and transfer it to a 50 mL graduated flask. Determine, by the use of a similar aliquot portion containing a few drops of bromophenol blue, the volume of sodium acetate solution required to bring the pH to 3.5 1.0. Add the same volume of acetate solution to the original aliquot part and then 4 mL each of the quinol and 1,10-phenanthroline solutions. Make up to the mark with distilled water, mix well, and allow to stand for 1 hour to complete the reduction of the iron. Compare the intensity of the colour produced with standards, similarly prepared, in any convenient way. If a colorimeter is... [Pg.691]

Second-order rate coefficients have been obtained for chlorination of alkyl-benzenes in acetic acid solutions (containing up to 27.6 M of water) at temperatures between 0 and 35 °C, and enthalpies and entropies of activation (determined over 25 °C range) are given in Table 63 for the substitution at the position indicated266. [Pg.106]

For formation of anticorrosive and adhesion-improving protective layers on metals the cleaned surface is treated with aqueous acidic solution containing molybdate, chromium fluoride, phosphate, acetate, and Zn ions. As dispersant a mixture of 60% alkali salt of a phosphate ester, 20% alkylpolyglucoside, and 20% fatty alcohol ethoxylate was applied. This method passivates the metal surface by formation of an anticorrosive and protective layer that improves adhesion of subsequent coatings. [Pg.604]

Oldfield D. and Symes T.E.F., 1983, Surface modification of elastomers for bonding, J. Adhes., 16, 77-96. Romero-Sanchez M.D., Pastor-Bias M.M., and Martm-Martmez J.M., 2003, Improved adhesion between pol)oirethane and SBR rubber treated with trichloroisocyanuric acid solutions containing different concentrations of chlorine. Compos Interface, 10(1), 77-94. [Pg.772]


See other pages where Acids solutions containing is mentioned: [Pg.49]    [Pg.180]    [Pg.333]    [Pg.201]    [Pg.572]    [Pg.483]    [Pg.195]    [Pg.598]    [Pg.72]    [Pg.114]    [Pg.865]    [Pg.994]    [Pg.733]    [Pg.772]    [Pg.781]    [Pg.1232]    [Pg.496]    [Pg.104]    [Pg.232]    [Pg.245]    [Pg.415]   


SEARCH



Acids containing

Solutes containing

© 2024 chempedia.info