Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyanide solution

In the presence of air, it is attacked by potassium cyanide solution, to give the complex dicyanoaurate(I) ion, in which gold has an oxidation state + 1 ... [Pg.431]

To a cold aqueous solution of picric acid, add about an equal volume of dilute potassium cyanide solution. An orange coloration develops and rapidly darkens to a deep red. [Pg.174]

Niiroprusside test. Dissolve about o-i g. of cystine in a few ml. of dilute ammonia and then add a few drops of potassium cyanide solution. This reduces cystine to cysteine,... [Pg.383]

Cuprous cyanide solution. The most satisfactory method is to dissolve the cuprous cyanide (1 mol) in a solution of technical sodium cyanide (2 5-2-6 mols in 600 ml. of water). If it is desired to avoid the preparation of solid cuprous cyanide, the following procedure may be adopted. Cuprous chloride, prepared from 125 g. of copper sulphate crystals as described under 1 above, is suspended in 200 ml. of water contained in a 1-litre round-bottomed flask, which is fitted with a mechanical stirrer. A solution of 65 g. of technical sodium cyanide (96-98 per cent.) in 100 ml. of water is added and the mixture is stirred. The cuprous chloride passes into solution with considerable evolution of heat. As the cuprous cyanide is usually emplo3 ed in some modification of the diazo reaction, it is usual to cool the resulting solution in ice. [Pg.192]

Zinc cyanide. Solutions of the reactants are prepared by dis solving 100 g. of technical sodium cyanide (97-98 per cent. NaCN) in 125 ml. of water and 150 g. of anhydrous zinc chloride in the minimum volume of 50 per cent, alcohol (1). The sodium cyanide solution is added rapidly, with agitation, to the zinc chloride solution. The precipitated zinc cyanide is filtered off at the pump, drained well, washed with alcohol and then with ether. It is dried in a desiccator or in an air bath at 50°, and preserved in a tightly stoppered bottle. The yield is almost quantitative and the zinc cyanide has a purity of 95-98 per cent. (2). It has been stated that highly purified zinc cyanide does not react in the Adams modification of the Gattermann reaction (compare Section IV,12l). The product, prepared by the above method is, however, highly satisfactory. Commercial zinc cyanide may also be used. [Pg.201]

Conduct the preparation in the fume cupboard. Dissolve 250 g. of redistilled chloroacetic acid (Section 111,125) in 350 ml. of water contained in a 2 -5 litre round-bottomed flask. Warm the solution to about 50°, neutralise it by the cautious addition of 145 g. of anhydrous sodium carbonate in small portions cool the resulting solution to the laboratory temperature. Dissolve 150 g. of sodium cyanide powder (97-98 per cent. NaCN) in 375 ml. of water at 50-55°, cool to room temperature and add it to the sodium chloroacetate solution mix the solutions rapidly and cool in running water to prevent an appreciable rise in temperature. When all the sodium cyanide solution has been introduced, allow the temperature to rise when it reaches 95°, add 100 ml. of ice water and repeat the addition, if necessary, until the temperature no longer rises (1). Heat the solution on a water bath for an hour in order to complete the reaction. Cool the solution again to room temperature and slowly dis solve 120 g. of solid sodium hydroxide in it. Heat the solution on a water bath for 4 hours. Evolution of ammonia commences at 60-70° and becomes more vigorous as the temperature rises (2). Slowly add a solution of 300 g. of anhydrous calcium chloride in 900 ml. of water at 40° to the hot sodium malonate solution mix the solutions well after each addition. Allow the mixture to stand for 24 hours in order to convert the initial cheese-Uke precipitate of calcium malonate into a coarsely crystalline form. Decant the supernatant solution and wash the solid by decantation four times with 250 ml. portions of cold water. Filter at the pump. [Pg.490]

Suberic acid. Prepare hexamethylene dibromide from hexamethy-lene glycol (Section 111,15) according to the procedure described in Section 111,35). Convert the 1 6-dibromohexane, b.p. H4r-115°/12 mm., into hexamethylene dicyanide, b.p. 178-180°/15 mm., by refluxing it with a 20-25 per eent. excess of aqueous - alcoholic sodium cyanide solution (compare Section 111,114), distilling off the hquid under diminished... [Pg.491]

The Sandmeyer reaction may also be applied to the preparation of nitriles. The solution of the diazonium salt is added to a solution of cuprous cyanide in excess of sodium or potassium cyanide solution (sometimes improved yields are obtained by substituting nickel cyanide for cuprous cyanide), for example CH3 CH, CH3... [Pg.594]

Benzonitrile (phenyl cyanide). Prepare a cuprous cyanide solution in a 500 ml. round-bottomed flask as above, but use the following quantities 65 g. of crystallised copper sulphate in 205 ml. of water, 18 g. of sodium bisulphite in 52 ml. of water, and 18 g. of potassium cyanide in... [Pg.608]

Chrysean (10), prepared by bubbling hydrogen sulfide through a sodium cyanide solution, was among the first described thiazoles (53-57). Other 5-aminothiazoles are also most easily prepared bv hetero-cyclization (see Chapter 11. Section II.5.A). [Pg.16]

A similar reaction leads to the precipitation of gold or silver from cyanide solution using zinc powder. [Pg.171]

Dissolution of Silver. Silver is dissolved by oxidising acids and alkaU metal cyanide solutions in the presence of oxygen. The latter method is the principal technique for dissolving silver from ore. Silver has extensive solubiUty in mercury (qv) and low melting metals such as sodium, potassium, and their mixtures. Cyanide solutions of silver are used for electroplating and electroforming. The silver is deposited at the cathode either as pure crystals or as layers on a mandrel. [Pg.83]

The chlorination process, introduced in Europe in 1843, roasted ore with chlorides, followed by a hot brine leach and subsequent precipitation of the silver on copper. In 1887 it was discovered that gold and silver can be recovered by sodium cyanide, and this process displaced the dangerous chlorination process. By 1907 the cyanide process, where a cyanide solution is mixed with 2inc dust to precipitate the silver, was universally in use. [Pg.83]

Silver Iodide. Silver iodide, Agl, precipitates as a yellow soHd when iodide ion is added to a solution of silver nitrate. It dissolves in the presence of excess iodide ion, forming an Agl2 complex however, silver iodide is only slightly soluble in ammonia and dissolves slowly in thiosulfate and cyanide solutions. [Pg.89]

Silver sulfide is one of the most insoluble salts known. It is not solubilized by nonoxidizing mineral acids, but it is soluble in concentrated nitric acid, concentrated sulfuric acid, and alkaline cyanide solutions. [Pg.90]

Electroplating. Aluminum can be electroplated by the electrolytic reduction of cryoHte, which is trisodium aluminum hexafluoride [13775-53-6] Na AlE, containing alumina. Brass (see COPPERALLOYS) can be electroplated from aqueous cyanide solutions which contain cyano complexes of zinc(II) and copper(I). The soft CN stabilizes the copper as copper(I) and the two cyano complexes have comparable potentials. Without CN the potentials of aqueous zinc(II) and copper(I), as weU as those of zinc(II) and copper(II), are over one volt apart thus only the copper plates out. Careful control of concentration and pH also enables brass to be deposited from solutions of citrate and tartrate. The noble metals are often plated from solutions in which coordination compounds help provide fine, even deposits (see Electroplating). [Pg.172]

Basic copper carbonate is essentially iasoluble ia water, but dissolves ia aqueous ammonia or alkaU metal cyanide solutions. It dissolves readily ia mineral acids and warm acetic acid to form the corresponding salt solution. [Pg.253]

The mother liquor is separated from the product and returned to the tower. Copper(II) oxychloride is iasoluble ia water, but dissolves readily ia mineral acids or warm acetic acid. The product dissolves ia ammonia and alkah cyanide solution upon the formation of coordination complexes. [Pg.254]

A German process produces a high (99%) sodium cyanide assay by absorbing the gases from a BMA-type hydrogen cyanide reactor direcdy in sodium hydroxide solution (56). The resulting sodium cyanide solution is heated in a crystallizer to remove water, and form sodium cyanide crystals. [Pg.383]

Beryllium, calcium, boron, and aluminum act in a similar manner. Malonic acid is made from monochloroacetic acid by reaction with potassium cyanide followed by hydrolysis. The acid and the intermediate cyanoacetic acid are used for the synthesis of polymethine dyes, synthetic caffeine, and for the manufacture of diethyl malonate, which is used in the synthesis of barbiturates. Most metals dissolve in aqueous potassium cyanide solutions in the presence of oxygen to form complex cyanides (see Coordination compounds). [Pg.385]

These cyanides are all soluble in water. The cyanide ion is weaMy held so that water solutions have a much stronger odor of hydrogen cyanide above them than sodium and potassium cyanide solution. [Pg.386]


See other pages where Cyanide solution is mentioned: [Pg.477]    [Pg.192]    [Pg.194]    [Pg.192]    [Pg.417]    [Pg.608]    [Pg.608]    [Pg.609]    [Pg.87]    [Pg.378]    [Pg.378]    [Pg.378]    [Pg.70]    [Pg.178]    [Pg.133]    [Pg.172]    [Pg.95]    [Pg.537]    [Pg.83]    [Pg.86]    [Pg.114]    [Pg.380]    [Pg.383]    [Pg.384]    [Pg.384]    [Pg.384]    [Pg.386]    [Pg.412]    [Pg.147]    [Pg.152]   
See also in sourсe #XX -- [ Pg.63 ]

See also in sourсe #XX -- [ Pg.544 ]

See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Cuprous cyanide solution

Cyanide ion in aqueous solution

Cyanides, solution pressure

Electrochemical processes cyanide solutions

Non-Cyanide Plating Solutions

Potassium Acetate Solution Cyanide

Sodium cyanide solution

© 2024 chempedia.info