Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface metal atoms

Catalysis by Metals. Metals are among the most important and widely used industrial catalysts (69,70). They offer activities for a wide variety of reactions (Table 1). Atoms at the surfaces of bulk metals have reactivities and catalytic properties different from those of metals in metal complexes because they have different ligand surroundings. The surrounding bulk stabilizes surface metal atoms in a coordinatively unsaturated state that allows bonding of reactants. Thus metal surfaces offer an advantage over metal complexes, in which there is only restricted stabilization of coordinative... [Pg.175]

Blocking of reaction sites The interaction of adsorbed inhibitors with surface metal atoms may prevent these metal atoms from participating in either the anodic or cathodic reactions of corrosion. This simple blocking effect decreases the number of surface metal atoms at which these reactions can occur, and hence the rates of these reactions, in proportion to the extent of adsorption. The mechanisms of the reactions are not affected and the Tafel slopes of the polarisation curves remain unchanged. Behaviour of this type has been observed for iron in sulphuric acid solutions containing 2,6-dimethyl quinoline, /3-naphthoquinoline , or aliphatic sulphides . [Pg.811]

Participation in the electrode reactions The electrode reactions of corrosion involve the formation of adsorbed intermediate species with surface metal atoms, e.g. adsorbed hydrogen atoms in the hydrogen evolution reaction adsorbed (FeOH) in the anodic dissolution of iron . The presence of adsorbed inhibitors will interfere with the formation of these adsorbed intermediates, but the electrode processes may then proceed by alternative paths through intermediates containing the inhibitor. In these processes the inhibitor species act in a catalytic manner and remain unchanged. Such participation by the inhibitor is generally characterised by a change in the Tafel slope observed for the process. Studies of the anodic dissolution of iron in the presence of some inhibitors, e.g. halide ions , aniline and its derivatives , the benzoate ion and the furoate ion , have indicated that the adsorbed inhibitor I participates in the reaction, probably in the form of a complex of the type (Fe-/), or (Fe-OH-/), . The dissolution reaction proceeds less readily via the adsorbed inhibitor complexes than via (Fe-OH),js, and so anodic dissolution is inhibited and an increase in Tafel slope is observed for the reaction. [Pg.811]

Class II dependence for the activation of a chemical bond as a function of surface metal atom coordinative unsaturation is typically found for chemical bonds of a character, such as the CH or C-C bond in an alkane. Activation of such bonds usually occurs atop of a metal atom. The transition-state configuration for methane on a Ru surface illustrates this (Figure 1.13). [Pg.20]

As we discussed in the previous section, the primary parameter that determines the interaction strength between an adsorbate and a (transition) metal surface is the coordinative unsaturation of the surface metal atoms. The lower the coordination number of a surface atom, the larger the interaction with interacting adsorbates. [Pg.23]

The next section introduces the topological concept of low-barrier transition states through the prevention of formation of shared bonds between reacting surface adsorbates and surface metal atoms. [Pg.25]

As can be seen from Figure 1.20 [22], those transition states that do not share binding to the same surface metal atom have low barriers. The fcc(lOO) surface has the unique property that the reaction can occur through motion over the square hollow with bonds that remain directed toward the corner atoms of the square atom arrangement on the surface. This is a unique and important feature of reactions that require in their transition states interactions with several surface atoms. [Pg.25]

If the degree of coverage of the ruthenium by the copper is very high, the copper atoms should be coordinated extensively to ruthenium atoms. It is emphasized that the ruthenium-copper clusters are of such a size (average diameter of 32A by electron microscopy (33)) that the surface metal atoms constitute almost half of the total. Hence for a Cu/Ru atomic ratio of one, the number of copper atoms would correspond roughly to that required to form a monolayer on the ruthenium. [Pg.255]

Geometrical effects, related to the number and geometrical arrangement of the surface metal atoms participating in the formation of the essential surface intermediates of the reaction in question. For these, number of atoms (ensemble size) appeared to be particularly crucial. [Pg.267]

Another way to monitor the expected changes in the metal electronic structure is to look at the adsorbed molecules, which are sensitive in their properties to the changes in the electronic structure of surface metal atoms. Such a molecule is CO and the frequency of the CO stretch vibrations ( v(CO)) is a sensitive detector of the direct- and back-donation upon adsorption of CO. It has been reported, that v(CO) decreases for the VIII group metal by alloying of Pd with Ag (22), Ni with Cu (23), but also when mixing Ni with Co (24). This has been first explained (25) as an indication for an increased backdonation due to an assumed electron shift Cu Pt,... [Pg.272]

For these structures, the surface metallic atoms (Ms) are located on the (111) or (100) planes, on corners or on edges [107]. Note that the number of... [Pg.185]

From a general point of view, a monometallic catalyst can be considered as surface metal atoms linked together, forming an ensemble on the surface [160]. [Pg.195]

Integrating equations (2.37) and (2.39) under assumption that in case of direct reaction of surface complex formation (Me C ) the reaction of interaction of oxygen with surface metal atoms is the limiting stage rather than formation of physadsorbed oxygen (i.e. assuming that [02( )J = const and it does not change in time) we arrive to the respective expression for kinetics of direct and inverse reactions ... [Pg.130]

During the catalytic cycle, surface intermediates include both the starting compounds and the surface metal atoms. This working site is a kind of supramolecule that has organometallic character, and, one hopes, the rules of the organometallic chemistry can be valid for this supramolecule. The synthesis of molecular models of these supramolecules makes it possible to study the elementary steps of the heterogeneous catalysis at a molecular level. Besides similarities there are, of course, also differences between the reactivity of a molecular species in solution and an immobilized species. For example, bimo-lecular pathways on surfaces are usually prohibited. [Pg.278]

Several additional conclusions concerning the nature of the chemisorbed layer can be drawn from the Hall effect measurements (33, 34) The chemisorbed species, together with the surface metal atoms, represent complexes analogical to the ordinary chemical compounds and, consequently, one might expect that the metal atoms involved in these complexes will contribute to lesser extent or not at all to the bulk properties of the metal. Then we should speak about the demetallized surface layer (41). When the Hall voltage was measured as a function of the evaporated film thickness... [Pg.61]


See other pages where Surface metal atoms is mentioned: [Pg.56]    [Pg.697]    [Pg.741]    [Pg.128]    [Pg.285]    [Pg.53]    [Pg.224]    [Pg.280]    [Pg.22]    [Pg.24]    [Pg.279]    [Pg.188]    [Pg.59]    [Pg.294]    [Pg.357]    [Pg.185]    [Pg.187]    [Pg.505]    [Pg.7]    [Pg.160]    [Pg.74]    [Pg.4]    [Pg.507]    [Pg.6]    [Pg.23]    [Pg.24]    [Pg.85]    [Pg.93]    [Pg.99]    [Pg.105]    [Pg.140]    [Pg.41]    [Pg.99]    [Pg.107]    [Pg.1049]    [Pg.68]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



Surface atoms

© 2024 chempedia.info