Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetone, determination

Procedure. Allow the whole of the sample solution (1 L) to flow through the resin column at a rate not exceeding 5 mL min . Wash the column with 250 mL of de-ionised water and reject the washings. Elute the copper(II) ions with 30 mL of 2M nitric acid, place the eluate in a small conical flask (lOOmL, preferably silica) and evaporate carefully to dryness on a hotplate (use a low temperature setting). Dissolve the residue in 1 mL of 0.1 M nitric acid introduced by pipette and then add 9 mL of acetone. Determine copper in the resulting solution using an atomic absorption spectrophotometer which has been calibrated using the standard copper(II) solutions. [Pg.213]

Acetone is to be extracted from a solution in water, using 1,1,2-trichloroethane. The feed concentration is 45.0 per cent w/w acetone. Determine the number of stages required to reduce the concentration of acetone to below 10 per cent, using 32 kg of extraction-solvent per 100 kg feed. [Pg.621]

Acetone, determination of aldehyde in, 37 for use in eaplotivet, examination of, 1 iodocnetric determination of, 51 Acidic measuremenu, test for stabilit> of expfoiiTes, 92... [Pg.474]

Calculate the Raoult law activity coefficients of both components and plot them as a function of the mole fraction of acetone. Determine the range of composition with respect to acetone that the solution can be regarded as regular. Calculate the enthalpy parameter for acetone-chloroform interactions on the basis of a one-parameter least-squares fit of the data in this range using an appropriate plot. [Pg.43]

Other aroma chemicals have been determined in different cosmetic products. So, in fine fragrances we can find papers focusing on cinnamyl anthranilate determination by LC-FL (Demers et al., 1987) or by TLC with fluorescence densitometry (FD) (Sherma and Pilgrim, 1988), and benzyhdene acetone determination by LC-FL (Yates and Wenninger, 1988) or... [Pg.253]

Most students will be familiar with simple distillation from their practical inorganic chemistry. Other students should determine the boiling-point of acetone (56°), using a water-bath and water-condenser, or of benzene (81 ), using a sand-bath and water-condenser, and finally of either aniline (184 ) or nitrobenzene (210 ), using for both these liquids a sand-bath and air-condenser. [Pg.9]

Reagent A is particularly useful for the treatment of the lower aliphatic aldehydes and ketones which are soluble in water cf. acetaldehyde, p. 342 acetone, p. 346). The Recent is a very dilute solution of the dinitrophenylhydrazine, and therefore is used more to detect the presence of a carbonyl group in a compound than to isolate sufficient of the hydrazone for effective recrystallisation and melting-point determination. [Pg.263]

Dissolve 5 g. of hydroxylamine hydrochloride in 10 ml. of water in a small conical flask and add a solution of 3 g. of sodium hydroxide in 10 ml. of water. Cool the solution in cold or ice water, and add 6 g. (7-6 ml.) of acetone slowly. Cool the flask, shake well, and leave overnight, during which time the oxime may crystallise out. If no crystals appear, cork the flask and shake vigorously when the acetoxime usually separates as colourless crystals. Filter the crystals at the pump, dry rapidly between filter paper (yield 2- 6 g.) and determine the m.p. (59°). Extract the filtrate with two 20 ml. portions of ether, and remove the solvent a further 0 - 5 g. of acetoxime (m.p. 60°) is obtained. Recrystallise from light petroleum, b.p. 40-60° CAUTION inflammable) to obtain the pure acetoxime, m.p. 60°. Acetoxime sublimes when left exposed to the air. [Pg.343]

The one-electron reduction of thiazole in aqueous solution has been studied by the technique of pulse radiolysis and kinetic absorption spectrophotometry (514). The acetone ketyl radical (CH ljCOH and the solvated electron e were used as one-electron reducing agents. The reaction rate constant of with thiazole determined at pH 8.0 is fe = 2.1 X 10 mole sec in agreement with 2.5 x 10 mole sec" , the value given by the National Bureau of Standards (513). It is considerably higher than that for thiophene (6.5 x 10" mole" sec" ) (513) and pyrrole (6.0 X10 mole sec ) (513). The reaction rate constant of acetone ketyl radical with thiazolium ion determined at pH 0.8 is lc = 6.2=10 mole sec" . Relatively strong transient absorption spectra are observed from these one-electron reactions they show (nm) and e... [Pg.135]

Acetone was originally observed about 1595 as a product of the distillation of sugar of lead (lead acetate). In the nineteenth century it was obtained by the destmctive distillation of metal acetates, wood, and carbohydrates with lime, and pyrolysis of citric acid. Its composition was determined by Liebig and Dumas in 1832. [Pg.94]

Acrolein is produced according to the specifications in Table 3. Acetaldehyde and acetone are the principal carbonyl impurities in freshly distilled acrolein. Acrolein dimer accumulates at 0.50% in 30 days at 25°C. Analysis by two gas chromatographic methods with thermal conductivity detectors can determine all significant impurities in acrolein. The analysis with Porapak Q, 175—300 p.m (50—80 mesh), programmed from 60 to 250°C at 10°C/min, does not separate acetone, propionaldehyde, and propylene oxide from acrolein. These separations are made with 20% Tergitol E-35 on 250—350 p.m (45—60 mesh) Chromosorb W, kept at 40°C until acrolein elutes and then programmed rapidly to 190°C to elute the remaining components. [Pg.124]

The standard methods (26) of analysis for commercial lecithin, as embodied in the Official and Tentative Methods of the American Oil Chemists Society (AOCS), generally are used in the technical evaluation of lecithin (27). Eor example, the AOCS Ja 4-46 method determines the acetone-insoluble matter under the conditions of the test, free from sand, meal, and other petroleum ether-insoluble material. The phosphoHpids are included in the acetone-insoluble fraction. The substances insoluble in hexane are determined by method AOCS Ja 3-87. [Pg.103]

Yields of excited states from 1,2-dioxetane decomposition have been determined by two methods. Using a photochemical method (17,18) excited acetone from TMD is trapped with /n j -l,2-dicyanoethylene (DCE). Triplet acetone gives i7j -l,2-dicyanoethylene with DCE, whereas singlet acetone gives 2,2-dimethyl-3,4-dicyanooxetane. By measuring the yields of these two products the yields of the two acetone excited states could be determined. The yields of triplet ketone (6) from dioxetanes are determined with a similar technique. [Pg.263]

Laminates. Laminate manufacture involves the impregnation of a web with a Hquid phenoHc resin in a dip-coating operation. Solvent type, resin concentration, and viscosity determine the degree of fiber penetration. The treated web is dried in an oven and the resin cures, sometimes to the B-stage (semicured). Final resin content is between 30 and 70%. The dry sheet is cut and stacked, ready for lamination. In the curing step, multilayers of laminate are stacked or laid up in a press and cured at 150—175°C for several hours. The resins are generally low molecular weight resoles, which have been neutralized with the salt removed. Common carrier solvents for the varnish include acetone, alcohol, and toluene. Alkylated phenols such as cresols improve flexibiUty and moisture resistance in the fused products. [Pg.306]

Chemical properties of isopropyl alcohol are determined by its functional hydroxyl group in the secondary position. Except for the production of acetone, most isopropyl alcohol chemistry involves the introduction of the isopropyl or isopropoxy group into other organic molecules by the breaking of the C—OH or the O—H bond in the isopropyl alcohol molecule. [Pg.105]

Sorbic acid and its salts are highly refined to obtain the necessary purity for use in foods. The quaUty requirements are defined by the Food Chemicals Codex (Table 3). Codistillation or recrystaUization from water, alcohoHc solutions, or acetone is used to obtain sorbic acid and potassium sorbate of a purity that passes not only the Codex requirements but is sufficient for long-term storage. Measurement of the peroxide content and heat stabiUty can further determine the presence of low amounts of impurities. The presence of isomers, other than the trans,trans form, causes instabiUty and affects the melting point. [Pg.284]

Various types of detector tubes have been devised. The NIOSH standard number S-311 employs a tube filled with 420—840 p.m (20/40 mesh) activated charcoal. A known volume of air is passed through the tube by either a handheld or vacuum pump. Carbon disulfide is used as the desorbing solvent and the solution is then analyzed by gc using a flame-ionization detector (88). Other adsorbents such as siUca gel and desorbents such as acetone have been employed. Passive (diffuse samplers) have also been developed. Passive samplers are useful for determining the time-weighted average (TWA) concentration of benzene vapor (89). Passive dosimeters allow permeation or diffusion-controlled mass transport across a membrane or adsorbent bed, ie, activated charcoal. The activated charcoal is removed, extracted with solvent, and analyzed by gc. Passive dosimeters with instant readout capabiUty have also been devised (85). [Pg.46]

There is no specific color or other reaction by which methyl chloride can be detected or identified. QuaUty testing of methyl chloride for appearance, water content, acidity, nonvolatile residue, residual odor, methanol, and acetone is routinely done by production laboratories. Water content is determined with Kad Fischer reagent using the apparatus by Kieselbach (55). Acidity is determined by titration with alcohoHc sodium hydroxide solution. The nonvolatile residue, consisting of oil or waxy material, is determined by evaporating a sample of the methyl chloride at room temperature. The residue is examined after evaporation for the presence of odor. Methanol and acetone content are determined by gas chromatography. [Pg.516]

Choline reineckate is used in the spectrophotometric determination of choline. Ammonium reineckate [13573-16-5] forms a water-insoluble complex with choline. The complex is soluble in acetone and a widely used method for determination of choline is by light absorption of acetone solutions... [Pg.101]

The mean chemical shifts of A- unsubstituted pyrazoles have been used to determine the tautomeric equilibrium constant, but the method often leads to erroneous conclusions (76AHC(Sl)l) unless the equilibrium has been slowed down sufficiently to observe the signals of individual tautomers (Section 4.04.1.5.1). When acetone is used as solvent it is necessary to bear in mind the possibility (depending on the acidity of the pyrazole and the temperature) of observing the signals of the 1 1 adduct (55) whose formation is thermodynamically favoured by lowering the solution temperature (79MI40407). A similar phenomenon is observed when SO2 is used as solvent. [Pg.182]

Analogously, pyrazolyl-aluminate and -indate ligands have been prepared <75JCS(D)749) and their chelating properties evaluated with cobalt, nickel, copper and zinc. Gallyl derivatives of pyrazoles and indazoles have been extensively studied by Storr and Trotter e.g. 75CJC2944) who determined several X-ray structures of these compounds. These derivatives exist in the solid state as dimers, such as (212) and (288). A NMR study in acetone solution showed the existence of a slow equilibrium between the dimer (212) and two identical tautomers (289) and (290) (Section 4.04.1.5.1) (81JOM(215)157). [Pg.236]

Schematic DRD shown in Fig. 13-59 are particularly useful in determining the imphcations of possibly unknown ternary saddle azeotropes by postulating position 7 at interior positions in the temperature profile. It should also be noted that some combinations of binary azeotropes require the existence of a ternaiy saddle azeotrope. As an example, consider the system acetone (56.4°C), chloroform (61.2°C), and methanol (64.7°C). Methanol forms minimum-boiling azeotropes with both acetone (54.6°C) and chloroform (53.5°C), and acetone-chloroform forms a maximum-boiling azeotrope (64.5°C). Experimentally there are no data for maximum or minimum-boiling ternaiy azeotropes. The temperature profile for this system is 461325, which from Table 13-16 is consistent with DRD 040 and DRD 042. However, Table 13-16 also indicates that the pure component and binary azeotrope data are consistent with three temperature profiles involving a ternaiy saddle azeotrope, namely 4671325, 4617325, and 4613725. All three of these temperature profiles correspond to DRD 107. Experimental residue cui ve trajectories for the acetone-... Schematic DRD shown in Fig. 13-59 are particularly useful in determining the imphcations of possibly unknown ternary saddle azeotropes by postulating position 7 at interior positions in the temperature profile. It should also be noted that some combinations of binary azeotropes require the existence of a ternaiy saddle azeotrope. As an example, consider the system acetone (56.4°C), chloroform (61.2°C), and methanol (64.7°C). Methanol forms minimum-boiling azeotropes with both acetone (54.6°C) and chloroform (53.5°C), and acetone-chloroform forms a maximum-boiling azeotrope (64.5°C). Experimentally there are no data for maximum or minimum-boiling ternaiy azeotropes. The temperature profile for this system is 461325, which from Table 13-16 is consistent with DRD 040 and DRD 042. However, Table 13-16 also indicates that the pure component and binary azeotrope data are consistent with three temperature profiles involving a ternaiy saddle azeotrope, namely 4671325, 4617325, and 4613725. All three of these temperature profiles correspond to DRD 107. Experimental residue cui ve trajectories for the acetone-...
Stratifying water systems for selective extraction of thiocyanate complexes of platinum metals have been proposed. The extraction degree of mthenium(III) by ethyl and isopropyl alcohols, acetone, polyethylene glycol in optimum conditions amounts to 95-100%. By the help of electronic methods, IR-spectroscopy, equilibrium shift the extractive mechanism has been proposed and stmctures of extractable compounds, which contain single anddouble-chai-ged acidocomplexes [Rh(SCN)J-, [Ru(SCN)J, [Ru(SCN)J -have been determined. Constants of extraction for associates investigated have been calculated. [Pg.257]

The following polyvitamin prepai ations were analyzed Kal tsid (OAO Comfort Plus , Russia), Asvitol (OAO INC Marbiofarm , Russia), Pikovit (KRKA, d.d. The New Place, Slovenia), Yeast with vitamin C (000 EKKO Plus , Russia). Chromatographic experiment has been carried out using Silufol UV-254 (Kavalier, Czech Republic) and acetone - ethyl acetate - acetic acid - ethanol (3 5 1 1) - CTAB (2T0 M) as a mobile phase mixture. The linearity calibration plot, built in coordinate S = f (IgqAC), is valid in the interval 5-25 p.g. Correctness of the determination has been checked by photometry. The obtained results for the ascorbic acid determination are presented below. [Pg.385]

The preparations are much simplified if a stoichiometric amount of hydrogen halide is added using an indicator to determine the end point. We have found that 1,9-diphenylnona-1,3,6,8-tetraen-5-one (dicinnamalacetone) is of appropriate basicity to detect excess anhydrous hydrogen halides in organic solvents including chloroform, dichloromethane, benzene, toluene, acetic acid, and acetone (but not in alcohols). The reaction between the... [Pg.144]


See other pages where Acetone, determination is mentioned: [Pg.185]    [Pg.73]    [Pg.185]    [Pg.284]    [Pg.74]    [Pg.756]    [Pg.185]    [Pg.73]    [Pg.185]    [Pg.284]    [Pg.74]    [Pg.756]    [Pg.102]    [Pg.230]    [Pg.263]    [Pg.1033]    [Pg.758]    [Pg.308]    [Pg.113]    [Pg.367]    [Pg.275]    [Pg.268]    [Pg.318]    [Pg.1316]    [Pg.1360]    [Pg.1482]    [Pg.2133]    [Pg.368]    [Pg.67]   
See also in sourсe #XX -- [ Pg.65 ]

See also in sourсe #XX -- [ Pg.121 , Pg.142 ]




SEARCH



© 2024 chempedia.info