Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolite-based membranes selectivity

During the last few years, ceramic- and zeolite-based membranes have begun to be used for a few commercial separations. These membranes are all multilayer composite structures formed by coating a thin selective ceramic or zeolite layer onto a microporous ceramic support. Ceramic membranes are prepared by the sol-gel technique described in Chapter 3 zeolite membranes are prepared by direct crystallization, in which the thin zeolite layer is crystallized at high pressure and temperature directly onto the microporous support [24,25],... [Pg.314]

Small pore (6- and 8-ring) zeolite-based membranes might be used in industrial processes involving hydrogen, in air separation or in separation of linear and branched alkanes,. plying small pore apertures might lead to high separation/selectivity. [Pg.421]

In order to achieve high selectivities with thermostable zeolite-based membranes, zeolites can be choosen with pore apertures matching the kinetic diameters of the molecules to be separated. Moreover, the hydrophobicity of all-silica zeolites provides continuous separation, independently of traces of water in the gas streams applied. In the total spectrum of tectosilica(te)s there is only one all-silica 8-ring system Deca-dodecasil 3R (DD3R) but several all-silica 6-ring systems Table 6). [Pg.422]

The first reported zeolite-based membranes were composed of zeolite-filled polymers [3-9]. The incorporation of zeolite crystals into these polymers resulted in a change of both permeation behavior and selectivity, due to the alteration of the affinity of the membrane for the components studied. Up to now, most known inorganic, zeolitic membranes have consisted of supported or unsupported ZSM-5 or silicalite [10-27]. Other reported membranes are prepared from zeolite-X [21], zeolite-A [21,28], or AIPO4-5 [29]. The materials used as support arc metals, glass, or alumina. The membrane configurations employed are flat sheet modules and annular tubes. [Pg.544]

One of the first zeolite based membranes were composite membranes, obtained by dispersion of zeolite crystals in dense polymeric films in order to make zeolite filled polymeric membranes [59,60,61], These membranes have been developed at the end of the 80 s for both gas separation and pervaporation. The clogging of zeolite pores by the matrix and the quality of the interface between the zeolite crystals and the polymer matrix (non-selective diffusion pathways) were key points. [Pg.137]

Zeolites are erystaUine nanoporous materials with uniform nanosized pores (<1 nm) (Fig. 9.3). Selective permeation in zeolite membranes is based on molecular sieving and selective adsorption. Zeolite membranes have drawn attention as suitable membranes for DH applications due to their high thermal and chemical stability. When supported (Fig. 9.3), zeolite-based membranes also offer excellent mechanical strength, which is an important feature for DH applications. The permeation of single compounds in zeolitic membranes depends on the kinetic diameter of the molecule and size selectivity and they exhibit moderate selectivities to hydrogen. [Pg.190]

Zeolite membranes indicate inorganic membranes with a selective/cata-lytic layer composed of a zeolite which is crystalline aluminosilicate with the feature of a high ordered porous structure with size comparable to molecular dimension. An example of the use of zeolites as a catalyst in a multi-phase membrane reactor can be found in Shukla and Kumar (2004) who have immobilized a lipase on a zeolite-clay composite membrane by using glu-taraldehyde as a bifunctional ligand in order to carry out the hydrolysis of olive oil. An application of a zeolite-based membrane in a three-phase membrane reactor has been reported by Wu et al. (1998), where TS-1 zeoUte crystallites were embedded in a polydimethylsiloxane (PDMS) membrane in order to catalyse the oxyfunctionalization of n-hexane (from a gas phase) with hydrogen peroxide (from a liquid phase). [Pg.174]

With appropriate membrane pore size and a narrow distribution, membrane selectivity for smaller gas molecules can be high but the overall permeability is generally low due to a high flow resistance in fine pores. Several studies are being conducted to develop molecular sieve-type membranes using different inorganic materials, for example, those based on carbon (Liu, 2007), silica (Pex and van Delft, 2005), and zeolites (Lin, 2007). [Pg.309]

Improved selectivity in the liquid-phase oligomerization of i-butene by extraction of a primary product (i-octene C8) in a zeolite membrane reactor (acid resin catalyst bed located on the membrane tube side) with respect to a conventional fixed-bed reactor has been reported [35]. The MFI (silicalite) membrane selectively removes the C8 product from the reaction environment, thus reducing the formation of other unwanted byproducts. Another interesting example is the isobutane (iC4) dehydrogenation carried out in an extractor-type zeolite CMR (including a Pt-based fixed-bed catalyst) in which the removal of the hydrogen allows the equilibrium limitations to be overcome [36],... [Pg.278]

There has been a large volume of data showing the benefit of having thin dense membranes (mostly Pd-based) on the hydrogen permeation rate and therefore the reaction conversion. An example is catalytic dehydrogenation of propane using a ZSM-5 based zeolite as the catalyst and a Pd-based membrane. Clayson et al. [1987] selected a membrane thickness of 100 m and achieved a yield of aromatics of 38% compared to approximately 80% when a 8.6 pm thick membrane is used [Uemiya et al., 1990]. [Pg.371]

This cost differential can be tolerated only in applications in which polymeric membranes completely fail in the separation [78]. Demanding separation applications, where zeolite membranes could be justified, due to the high temperatures involved or the added value of the components, and have been tested at laboratory scale, are the following separation of isomers (i.e., butane isomers, xylene isomers), organic vapor separations, carbon dioxide from methane, LNG (liquefied natural gas) removal, olefines/paraffins and H2 from mixtures. In most cases, the separation is based on selective diffusion, selective adsorption, pore-blocking effects, molecular sieving, or combinations thereof. The performance or efficiency of a membrane in a mixture is determined by two parameters the separation selectivity and the permeation flux through the membrane. [Pg.283]

Catalysis by zeolites is a rapidly expanding field. Beside their use in acid catalyzed conversions, several additional areas can be identified today which give rise to new catalytic applications of zeolites. Pertinent examples are oxidation and base catalysis on zeolites and related molecular sieves, the use of zeolites for the immobilization of catalytically active guests (i.e., ship-in-the-bottle complexes, chiral guests, enzymes), applications in environmental protection and the development of catalytic zeolite membranes. Selected examples to illustrate these interesting developments are presented and discussed in the paper. [Pg.363]

Zeolite materials are used commercially as shape/ size selective catalysts in the petrochemical and petroleum refining industry, and as molecular sieving separation media for gases and hydrocarbons. For both applications, zeolites are used in powder composite form such as pellets and granules. In this entry, we focus on zeolite membranes. We define zeolite membranes as a continuous phase of zeolite-based materials (pure zeolite or composite) that separate two spaces. Zeolite membranes are generally uniform thin films attached to a porous or a nonporous substrate. They can also be self-standing without a substrate. Note that we have included zeolite films and layers on nonporous substrate in this entry because we believe many of the synthesis strategies and applications reported for those nonporous substrates are easily transferred to a porous substrate to prepare a zeolite membrane. [Pg.3237]

Zeolite membranes and films have been employed to modify the surface of conventional chemical electrodes, or to conform different types of zeolite-based physical sensors [49]. In quartz crystal microbalances, zeolites are used to sense ethanol, NO, SO2 and water. Cantilever-based sensors can also be fabricated with zeolites as humidity sensors. The modification of the dielectric constant of zeolites by gas adsorption is also used in zeolite-coated interdigitaled capacitors for sensing n-butane, NH3, NO and CO. Finally, zeolite films can be used as barriers (for ethanol, alkanes,...) for increasing the selectivity of both semiconductor gas sensors (e.g. to CO, NO2, H2) and optical chemical sensors. [Pg.153]

According to a recent conference given by Prof. Kita [162], the classical synthesis method currently used by Mitsui allows to produce about 250 zeolite membranes per day. Both the LTA and T types (Na K) membranes are now commercial and more than 80 pervaporation and vapor permeation plants are operating in Japan for the dehydration of organic liquids [163]. A typical pervaporation system, similar to the one described in [8], is shown in Fig. 11. One of the most recent applications concerns the production of fuel ethanol from cellulosic biomass by a vapour permeation/ pervaporation combined process. The required heat is only 1 200 kcal per liter of product, i.e. half of that of the classical process. Mitsui has recently installed a bio-ethanol pilot plant based on tubular LTA membranes in Brazil (3 000 liters/day) and a plant with 30 000 liters/day has been erected in India. The operating temperature is 130 °C, the feed is 93 % ethanol, the permeate is water and the membrane selectivity is 10 000. [Pg.153]

Currently, PV with zeolite membranes is the most advanced technology at an industrial scale [189]. The growing interest for zeolite-based PV process lies not only in the excellent chemical resistance of these membranes bnt also in the high separation selectivity and high permeate fluxes compared to organopolymeric membranes. The current... [Pg.245]

It is known that zeolite membranes essentially contain intercrystalline non-zeolitic pores (defects). This irregular nature of zeolite membranes with intercrystalline pores adds to the complexity of the transport process in addition to the contribution of a support layer to the permeation resistance. For zeolite membranes, selectivity similar to that expected for Knudsen flow generally indicates the presence of intercrystalline pores. Separation based primarily on adsorption differences, which is generally true in the separation of liquid mixtures by pervaporation, may have tolerance to the intercrystalline pores. However, in order to obtain high perm-selectivity, the zeolite membranes must have negligible amounts of intercrystalline pores and pinholes of larger than 2nm so as to reduce the gas flux from these defects [3]. [Pg.77]

Mixed matrix membranes (MMM) consist of a nanopaiticle filler like zeolite, metal-organic framework ionic liquid or carbon, in a continuous polymer phase thereby combining the molecular sieving or another property of the filler with the established processability of the polymers in one membrane. The concept of zeolite-based mixed matrix membranes is followed for more than 30 years. However, in most cases these zeolite-based MMMs did not show an improvement of the selectivity because of an imperfect embedding of the zeolite crystals into the polymer matrix as shown schematically in Fig. 19. [Pg.300]


See other pages where Zeolite-based membranes selectivity is mentioned: [Pg.586]    [Pg.2]    [Pg.69]    [Pg.334]    [Pg.208]    [Pg.290]    [Pg.478]    [Pg.419]    [Pg.1218]    [Pg.168]    [Pg.300]    [Pg.310]    [Pg.1578]    [Pg.353]    [Pg.326]    [Pg.337]    [Pg.91]    [Pg.246]    [Pg.167]    [Pg.283]    [Pg.413]    [Pg.211]    [Pg.226]    [Pg.22]    [Pg.154]    [Pg.331]    [Pg.595]    [Pg.23]    [Pg.19]    [Pg.301]    [Pg.798]   
See also in sourсe #XX -- [ Pg.49 ]

See also in sourсe #XX -- [ Pg.49 ]




SEARCH



Bases membrane

Membrane selection

Membrane selectivity

Membranes zeolite

Selectivity zeolite membranes

Zeolite-based membranes

Zeolites zeolite membranes

© 2024 chempedia.info