Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water bath electrically-heated

Rotary vacuum evaporator, 40 °C bath temperature Water-bath, electrically heated, temperature 80 °C Condenser... [Pg.552]

Gas chromatograph equipped with a nitrogen-phosphorus detector Water-bath electrically heated, temperature 45 °C... [Pg.586]

SPE cartridge column Mega Bond Elut Cig, lO-g/60-mL (Varian). The SPE cartridge column is rinsed with 100 mL of methanol and 100 mL of distilled water Rotary vacuum evaporator, 40 °C bath temperature Water-bath, electrically heated, temperature 80 °C Mechanical shaker (universal shaker)... [Pg.1222]

Consequently traces of these unstable peroxides are present in samples of all the lower aliphatic ethers unless the samples have been freshly distilled. If these ethers when being distilled are heated on, for example, an electric heater, the final residue of peroxide may become sufficiently hot to explode violently. The use of a water-bath for heating, as described above, decreases considerably both the risk of the ether catching fire and of the peroxide exploding. [Pg.83]

Azlactone of a-benzoylaminocinnamic acid. Place a mi.xture of 27 g. (26 ml.) of redistilled benzaldehyde, 45 g. of Mppuric acid (Section IV,54), 77 g. (71-5) ml. of acetic anhydride and 20-5 g. of anhydrous sodium acetate in a 500 ml. conical flask and heat on an electric hot plate with constant shaking. As soon as the mixture has liquefied completely, transfer the flask to a water bath and heat for 2 hours. Then add 100 ml. of alcohol slowly to the contents of the flask, allow the mixture to stand overnight, filter the crystalline product with suction, wash with two 25 ml. portions of ice-cold alcohol and then wash with two 25 ml. portions of boiling water dry at 100°. The yield of almost pure azlactone, m.p. 165-166°, is 40 g. Recrystallisation from benzene raises the m.p. to 167-168°. [Pg.910]

Fig. 10. Baths a—water 6—water with electric heating... Fig. 10. Baths a—water 6—water with electric heating...
Discussion Note that if the water bath is heated electrically, a 4,6 kW resistance heater vrill be needed just to make up for the heat loss from the top surface. The total heater size will have to be larger to account for the heat losses from the side and bottom surfaces of the bath as v/ell as the heat absorbed by the spray paint cans as they are heated to 50°C. Also note that water needs to be supplied to the bath at a rate of 5.24 kg/h to make up for the water loss by evaporation. Also, in reality, the surface temperature will probably be a little lower than the bulk water temperature, and thus the heat transfer rates will be somesvhat lower than indicated here. [Pg.838]

With this method, a measured or weighed water sample is heated in a suitable evaporation vessel until the water is almost completely evaporated and only those substances which were previously dissolved in the water and are not volatile at the selected temperature remain in the dish. The vessel can be a weighed platinum, glass or porcelain dish, and the sample is heated over a boiling water bath, a heated sand bath, an electric hot plate or an air bath. The evaporation residue can then be dried to constant... [Pg.71]

Concentrate each of the two solutions (or eluates) to about 20 ml, by distilling off the greater part of the benzene, the distilling-flask being immersed in the boiling water-bath. Then pour the concentrated solution into an evaporating-basin, and evaporate the remaining benzene (preferably in a fume-cupboard) in the absence of free flames, i.e., on an electrically heated water-bath, or on a steam-bath directly connected to a steam-pipe. Wash the dry residue from the first eluate with petrol and then dry it in a desiccator pure o-nitroaniline, m.p. 72°, is obtained. Wash the second residue similarly with a small quantity of benzene and dry pure />--nitroaniline, m.p. 148" , is obtained. Record the yield and m.p. of each component. [Pg.50]

For temperatures up to 100°, a water bath or steam bath is generally employed. The simplest form is a beaker or an enamelled iron vessel mounted on a suitable stand water is placed in the vessel, which is heated by means of a flame. This arrangement may be used for non-inflammable liquids or for refluxing liquids of low boiling point. Since numerous liquids of low boiling point are highly inflammable, the presence of a naked flame will introduce considerable risk of fire. For such liquids a steam bath or an electrically-heated water bath, provided with a constant-level device, must be used. If the laboratory is equipped with a... [Pg.57]

Ether. The most satisfactory method for the removal of (diethyl) ether is either on a steam bath fed from an external steam supply or by means of an electrically-heated, constant-level water bath (Fig. 77, 5, 1). If neither of these is available, a water bath containing hot water may be used. The hot water should be brought from another part of the laboratory under no circumstances should there be a free flame under the water bath. It caimot be too strongly emphasised that no flame whatsoever may be present in the vicinity of the distillation apparatus a flame 10 feet away may ignite diethyl ether if a continuous bench top lies between the flame and the still and a gentle draught happens to be blowing in the direction of the flame. [Pg.90]

Fig. II, 37, 2 depicts the apparatus for dealing with comparatively small volumes of liquid. The essential feature is the special condenser with a take-off tube. A few small pieces of porous porcelain are introduced and the flask is heated either on a water bath or upon an electric hot plate. The assembly is also useful in the recrystaUisation of compounds which dissolve slowly excess of solvent may be employed, and the excess of solvent subsequently removed by distillation. Fig. II, 37, 2 depicts the apparatus for dealing with comparatively small volumes of liquid. The essential feature is the special condenser with a take-off tube. A few small pieces of porous porcelain are introduced and the flask is heated either on a water bath or upon an electric hot plate. The assembly is also useful in the recrystaUisation of compounds which dissolve slowly excess of solvent may be employed, and the excess of solvent subsequently removed by distillation.
Attention is directed to the fact that ether is highly inflammable and also extremely volatile (b.p. 35°), and great care should be taken that there is no naked flame in the vicinity of the liquid (see Section 11,14). Under no circumstances should ether be distilled over a bare flame, but always from a steam bath or an electrically-heated water bath (Fig.//, 5,1), and with a highly efficient double surface condenser. In the author s laboratory a special lead-covered bench is set aside for distillations with ether and other inflammable solvents. The author s ether still consists of an electrically-heated water bath (Fig. 11, 5, 1), fitted with the usual concentric copper rings two 10-inch double surface condensers (Davies type) are suitably supported on stands with heavy iron bases, and a bent adaptor is fitted to the second condenser furthermost from the water bath. The flask containing the ethereal solution is supported on the water bath, a short fractionating column or a simple bent still head is fitted into the neck of the flask, and the stUl head is connected to the condensers by a cork the recovered ether is collected in a vessel of appropriate size. [Pg.165]

In a 1 litre round-bottomed flask provided with an efficient double surface condenser, place 40 g. (39 ml.) of aniline, 50 g. (40 ml.) of carbon sulphide CAUTION inflammable) (1), and 50 g. (63-5 ml.) of absolute ethyl alcohol (2). Set up the apparatus in the fume cupboard or attach an absorption device to the top of the condenser (see Fig. 11, 8, 1) to absorb the hydrogen sulphide which is evolved. Heat upon an electrically-heated water bath or upon a steam bath for 8 hours or until the contents of the flask sohdify. When the reaction is complete, arrange the condenser for downward distillation (Fig. 11, 13, 3), and remove the excess of carbon disulphide and alcohol (CA UTION inflammable there must be no flame near the receiver). Shake the residue in the flask with excess of dilute hydrochloric acid (1 10) to remove any aniline present, filter at the pump, wash with water, and drain well. Dry in the steam oven. The yield of crude product, which is quite satisfactory for the preparation of phenyl iao-thiocyanute (Section IV.95), is 40-45 g. Recrystalhse the crude thiocarbanihde by dissolving it, under reflux, in boiling rectified spirit (filter through a hot water funnel if the solution is not clear), and add hot water until the solution just becomes cloudy and allow to cool. Pure sj/m.-diphenylthiourea separates in colourless needles, m.p, 154°,... [Pg.642]

At the end of this time, allow to cool then add enough 25% Sodium Hydroxide solution to to get the pH above 11. Heat on a water bath or with gentle electric heat to drive the Methylamine off as a gas into the same beaker of Hydrochloric acid used as a trap during the reaction. [Pg.273]

Place 3 3oz packets of Mildewcide into a 1L flask with an electric heating mantle and cork in the neck connected to a gas bubbler immersed in at least 550mL of distilled water. Heat the paraformaldehyde (what is in the Mildewcide) to between 180-200C (a temp, regulator is absolutely necessary for this step or use a silicone oil bath). The paraformaldehyde will depolymerize making formaldehyde gas in about 91% yield. Alternatively, the gas can be bubbled through the Ammonia solution directly (only for the brave ). If the Formaldehyde solution will not be used immedi-... [Pg.275]

Xylenes (o 143-145°, m 138-139°, p 138°) steam or electrically heated water baths should be heated over a naked flame. [Pg.37]

In a 500-ml. round-bottomed flask fitted with a reflux condenser are placed 16.2 g. (0.08 mole) of dry a-naphthylthiourea (Note 1) and 180 ml. of redistilled chlorobenzene. The flask is heated at the reflux temperature by means of an electric heating mantle. Evolution of ammonia begins almost at once, and all of the solid dissolves after 30-45 minutes. The solution is maintained at reflux for 8 hours (Note 2) and then evaporated on a steam bath at water-pump pressure to remove all of the chlorobenzene. The residue crystallizes on cooling and is extracted with four 30-ml. portions of boUing hexane (Note 3). Removal of solvent from the combined hexane extracts affords pale yellow crystals of naphthyl isothiocyanate, m.p. 58-59°. The yield is 12.7-13.0 g. (86-88%). Recrystallization from hexane (9 ml. of hexane for 1 g. of solute) gives colorless needles, melting point unchanged (Note 4). [Pg.56]

There are many other types of heat exchanger devices that can be used to heat the gas above the hydrate temperature. These could include shell and tube heat exchangers, electrical immersion heaters, furnaces, etc. However, the most common equipment type used to heat a well stream is the indirect fired water bath heater. [Pg.109]

A calorimeter was calibrated with an electric heater, which supplied 22.5 kj of energy to the calorimeter and increased the temperature of the calorimeter and its water bath from 22.45°C to 23.97°C. What is the heat capacity of the calorimeter ... [Pg.379]

A sketch of the process helps to identify what takes place. The electrical heater converts electrical energy into heat that flows into the calorimeter and raises the temperature of the water bath. [Pg.389]

These four main types of apparatus being defined, (scientiste and manufacturers have let their imagination go in order to create apparatus). There are now about ten models, which differ by the volume of liquid used (from 2 cm to about 70 cm, the metal used for the cup (brass, aluminium), the heating mode (water bath, Bunsen burner, electrical), the type of gas used by the pilot light (natural gas, butane), the level of complexity of automatic controls some apparatus equipped with several cups can actually be programmed in order to make measurements automatically without the help of the operator. The liquid can be shaken manually or, thanks to an electrical motor, the ignition can be manual or automatic. [Pg.56]


See other pages where Water bath electrically-heated is mentioned: [Pg.266]    [Pg.58]    [Pg.305]    [Pg.358]    [Pg.485]    [Pg.486]    [Pg.604]    [Pg.142]    [Pg.217]    [Pg.179]    [Pg.18]    [Pg.113]    [Pg.170]    [Pg.58]    [Pg.68]    [Pg.166]   
See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.58 ]




SEARCH



Electrical water

Electrically heated)

Heat bath

Heat electrical

Heat water

Heated baths

Heating baths

Heating baths water

Heating electric

Water bath

Water heating

© 2024 chempedia.info