Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wastewater treatment levels

Table V shows the effect of wastewater treatment level on the cost-effectiveness of a hypothetical 1-MGD algae pond system in Greensboro. NC, as a base case. Cash flow decreases as the level of treatment increases. For... Table V shows the effect of wastewater treatment level on the cost-effectiveness of a hypothetical 1-MGD algae pond system in Greensboro. NC, as a base case. Cash flow decreases as the level of treatment increases. For...
Another important example of redox titrimetry that finds applications in both public health and environmental analyses is the determination of dissolved oxygen. In natural waters the level of dissolved O2 is important for two reasons it is the most readily available oxidant for the biological oxidation of inorganic and organic pollutants and it is necessary for the support of aquatic life. In wastewater treatment plants, the control of dissolved O2 is essential for the aerobic oxidation of waste materials. If the level of dissolved O2 falls below a critical value, aerobic bacteria are replaced by anaerobic bacteria, and the oxidation of organic waste produces undesirable gases such as CH4 and H2S. [Pg.345]

Under the pressure of progressively more stringent government regulations with regard to permissible levels of residual NH and urea content in wastewaters, the fertilizer industry made an effort to improve wastewater treatment (see also Water, sewage). [Pg.308]

Phenol can be oxidi2ed and hence removed, ie, to levels <20 / g/L, from wastewater (248). Moreover, addition of potassium permanganate to the return activated sludge results in reduction of odors issued from the aeration tanks of conventional activated sludge wastewater treatment plants without any change occurring to the microbiology of the system (249). [Pg.528]

Wastewater Treatment Plants. Numerous studies have shown that phthalates in wastewater systems are removed to a significant extent by treatment plants. The concentration of phthalates in both domestic and industrial wastewater was measured before and after treatment (55). The total level of phthalates in domestic effluent was reduced by treatment from 32.7 to 0.92 )-lg/L and in industrial effluent from 93.6 to 1.06 )-lg/L. Thus between 97 and 99% of the phthalates are removed from wastewater by treatment plants. [Pg.132]

Conclusions. The impact of plasticizers on the environment is very low and is diminishing as evidenced by analytical data showiag that the levels of phthalates ia surface waters and sediments are decreasiag. This is despite the fact that their usage has continued to iacrease aimuaHy and is most likely due to improved emission controls and wastewater treatment. [Pg.133]

There are two reasons why the concentration of quaternaries is beheved to remain at a low level in sewage treatment systems. First, quaternaries appear to bind anionic compounds and thus are effectively removed from wastewater by producing stable, lower toxicity compounds (205). Anionic compounds are present in sewer systems at significantly higher concentrations than are cations (202). Second, the nature of how most quaternaries are used ensures that their concentrations in wastewater treatment systems are always relatively low but steady. Consumer products such as fabric softeners, hair conditioners, and disinfectants contain only a small amount of quaternary compounds. This material is then diluted with large volumes of water during use. [Pg.379]

Processes for SS separation may fill three distinct functions in wastewater treatment, namely, pretreatment to protect subsequent processes and reduce their loadings to required levels, treatment to reduce effluent concentrations to required standards, and separation of solids to produce concentrated recycle streams required to maintain other processes. In the first two functions effluent quality is the prime consideration, but where the third function must be fulfilled along with one of the others, design attention must be given to conditions for both the separated solids (sludge) and the process effluent. [Pg.403]

The names or acronyms given to many applications are not easily recognized for the applications ability to meet a particular need. The list therefore includes several types of systems that have no direct applicability to SARA requirements (e.g., wastewater treatment plant optimization assistance with ordering chemicals). The creation of a comprehensive list of environmented applications provides a higher level of assurance that software that is relevant to Title III has not been overlooked. The list can also be used to eliminate systems from the review process and reduce the effort needed to identify a system that has the required capabilities. [Pg.280]

The solids that result from wastewater treatment may contain concentrated levels of contaminants that were originally contained in the wastewater. A great deal of concern must be directed to the proper disposal of these solids to protect environmental considerations. Failure to do this may result in a mere shifting of the original pollutants in the waste stream to the fmal disposal site where they may again become free to contaminate the environment and possibly place the public at risk. A more reasonable approach to ultimate solids disposal is to view the sludge... [Pg.566]

An RCRA, TSD facility consists of tank farms and wastewater treatment plants handling low-level radiological wastewater. The tank farms... [Pg.24]

Conclusions - Dissolved Oxygen. Continued attainment of DO standards in the Willamette Basin in the face of a current regional growth rate of 1% yr will require continued augmentation of flow as well as pollution control, particularly with respect to ammonia. Based on model results discussed, there appears to be little justification for the installation of advanced wastewater treatment systems in the basin for the purpose of maintaining acceptable DO levels. [Pg.265]

Level 1 For each River Basin, identification of the existing problems and their possible causes (the same problem can be originated for more than one cause). For example, the problem No demand satisfaction can be caused by water transfers, surface water and groundwater extraction, agricultural and farm activities (water pollution), a lack of urban and industrial wastewater treatment, Combined Sewer Overflows (CSOs), etc. [Pg.139]

Inputs from WWTP effluents can also affect the hydrologic and nutrient concentration regimes of recipient streams at different temporal scales. Daily variations of these parameters may be exacerbated in streams below the WWTP input by the diel patterns of the effluent discharge associated with plant operation [46]. In contrast, at the annual scale, seasonal variations of physical and chemical parameters upstream of the WWTP may be dampened by the constant input of additional water and nutrients from the WWTP. At its extreme, naturally intermittent or ephemeral streams may turn into permanent streams downstream of WWTPs [28, 30]. In these effluent-dominated streams, the relative contribution of WWTP inputs may vary widely on an annual basis, as shown by the 3-100% range measured in a Mediterranean stream [47]. Finally, WWTP inputs also cause shifts in the relative availability of N and P as well as in the relative importance of reduced and oxidized forms of N in the stream [30, 47]. The magnitude of these shifts depends on the level of wastewater treatment (i.e., primary, secondary, or tertiary treatment), the type of WWTP infrastructure (e.g., activated sludge reactor. [Pg.178]

Very limited data on the heat and mass transfer in three-phase inverse fluidization systems is available up to now. For the wastewater treatment, the reactor temperature should be controlled and maintained within a certain level to optimize the reactor performance, since the temperature of reactor or process can provide the microorganisms with favorable circumances. [Pg.102]

About 100 gal of process wastewater is typically generated from 1 t of coke produced.15 These wastewaters from byproduct coke making contain high levels of oil and grease, ammonia nitrogen, sulfides, cyanides, thiocyanates, phenols, benzenes, toluene, xylene, other aromatic volatile components, and polynuclear aromatic compounds. They may also contain toxic metals such as antimony, arsenic, selenium, and zinc. Water-to-air transfer of pollutants may take place due to the escape of volatile pollutants from open equalization and storage tanks and other wastewater treatment systems in the plant. [Pg.43]

Table 4.4 presents wastewater flow characterization for the foundry industry by casting metals. Also presented in this table is the level of process water recycle, and the number of plants surveyed with central wastewater treatment facilities for all of the processes at that plant. The discharge flow represents all processes within the specific metal casting facilities. [Pg.163]

FIGURE 6.2 Rate of reduction of hexavalent chromium in the presence of excess S02 at various pH levels. (Taken from Krofta, M. and Wang, L.K., Design of Innovative Flotation-Filtration Wastewater Treatment Systems for a Nickel-Chromium Plating Plant, U.S. Department of Commerce, National Technical Information Service, Springfield, VA, Technical Report PB-88-200522/AS, January 1984.)... [Pg.243]

Granular bed filters are used in porcelain enameling wastewater treatment to remove residual solids from clarifier effluent (sedimentation effluent or flotation effluent). Filtration polishes the effluent and reduces suspended solids and insoluble precipitated metals to very low levels. Fine sand and coal are media commonly utilized in granular bed filtration. The filter is backwashed after becoming loaded with solids and the backwash is returned to the treatment plant influent for removal of solids in the clarification step.10-12... [Pg.329]

On April 8, 2003, U.S. EPA proposed to add benzene and 2-ethoxyethanol to the list of solvents whose mixtures with wastewater are exempted from the definition of hazardous waste.23 U.S. EPA is proposing to provide flexibility in the way compliance with the rule is determined by adding the option of directly measuring solvent chemical levels at the headworks of the wastewater treatment system. In addition, U.S. EPA is proposing to include scrubber waters derived from the combustion of spent solvents to the headworks exemption. Finally, U.S. EPA is finalizing the Headworks Rule, as follows24 ... [Pg.516]

Treatment of wastewater generated in most industries is often achieved in many steps depending on the volume, shape, and nature of constituents of the wastewater. A typical wastewater treatment plant combines water treatment unit operations and processes to achieve different levels of treatment. They include the following. [Pg.914]


See other pages where Wastewater treatment levels is mentioned: [Pg.260]    [Pg.291]    [Pg.260]    [Pg.291]    [Pg.525]    [Pg.379]    [Pg.154]    [Pg.60]    [Pg.99]    [Pg.489]    [Pg.2213]    [Pg.372]    [Pg.573]    [Pg.179]    [Pg.261]    [Pg.62]    [Pg.87]    [Pg.173]    [Pg.197]    [Pg.198]    [Pg.199]    [Pg.4]    [Pg.870]    [Pg.145]    [Pg.74]    [Pg.65]    [Pg.67]    [Pg.396]    [Pg.516]    [Pg.881]    [Pg.914]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Wastewater treatment

© 2024 chempedia.info