Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vulcanisates, analysis

For the purpose of polymer/additive analysis most applications refer to vulcanisate analysis. Weber [370] has determined various vulcanisation accelerators (Vulkazit Thiuram/Pextra N/Merkapto/AZ/DM) in rubbers using PC. Similarly, Zijp [371] has described application of PC for identification of various vulcanisation accelerator classes (guanidines, dithiocarbaminates, thiuramsulfides, mercapto-substituted heterocyclic compounds, thioureas, etc.). The same author has also... [Pg.220]

Conventional rubber compound analysis requires several instrumental techniques, in addition to considerable pretreatment of the sample to isolate classes of components, before these selected tests can be definitive. Table 2.5 lists some general analytical tools. Spectroscopic methods such as FTIR and NMR often encounter difficulties in the analysis of vulcanised rubbers since they are insoluble and usually contain many kinds of additives such as a curing agent, plasticisers, stabilisers and fillers. Pyrolysis is advantageous for the practical analysis of insoluble polymeric materials. [Pg.33]

Table 2.7 lists techniques used to characterise carbon-blacks. Analysis of CB in rubber vulcanisates requires recovery of CB by digestion of the matrix followed by filtration, or by nonoxidative pyrolysis. Dispersion of CB within rubber products is usually assessed by the Cabot dispersion test, or by means of TEM. Kruse [46] has reviewed rubber microscopy, including the determination of the microstructure of CB in rubber compounds and vulcanisates and their qualitative and quantitative determination. Analysis of free CB features measurements of (i) particulate and aggregate size (SEM, TEM, XRD, AFM, STM) (ii) total surface area according to the BET method (ISO 4652), iodine adsorption (ISO 1304) or cetyltrimethylammonium bromide (CTAB) adsorption (ASTM D 3765) and (iii) external surface area, according to the dibutylphthalate (DBP) test (ASTM D 2414). TGA is an excellent technique for the quantification of CB in rubbers. However, it is very limited in being able to distinguish the different types of... [Pg.34]

It is of interest to examine the development of the analytical toolbox for rubber deformulation over the last two decades and the role of emerging technologies (Table 2.9). Bayer technology (1981) for the qualitative and quantitative analysis of rubbers and elastomers consisted of a multitechnique approach comprising extraction (Soxhlet, DIN 53 553), wet chemistry (colour reactions, photometry), electrochemistry (polarography, conductometry), various forms of chromatography (PC, GC, off-line PyGC, TLC), spectroscopy (UV, IR, off-line PylR), and microscopy (OM, SEM, TEM, fluorescence) [10]. Reported applications concerned the identification of plasticisers, fatty acids, stabilisers, antioxidants, vulcanisation accelerators, free/total/bound sulfur, minerals and CB. Monsanto (1983) used direct-probe MS for in situ quantitative analysis of additives and rubber and made use of 31P NMR [69]. [Pg.36]

Deformulation of vulcanised rubbers and rubber compounds at Dunlop (1988) is given in Scheme 2.3. Schnecko and Angerer [72] have reviewed the effectiveness of NMR, MS, TG and DSC for the analysis of rubber and rubber compounds containing curing agents, fillers, accelerators and other additives. PyGC has been widely used for the analysis of elastomers, e.g. in the determination of the vulcanisation mode (peroxide or sulfur) of natural rubbers. [Pg.36]

At Goodyear laser-desorption MS has been used for direct analysis of rubber additives (e.g. antioxidants, antiozonants, vulcanising agents, processing oils, silica fillers, etc.), in situ at the surface of an elastomeric vulcanisate [74,75]. [Pg.39]

Scheme 2.7 Analysis of rubbers and vulcanisates (bold main techniques). After Brttck [81]. Reproduced by permission of Deutsches Institut ftir Kautschute Technologie, Hannover... Scheme 2.7 Analysis of rubbers and vulcanisates (bold main techniques). After Brttck [81]. Reproduced by permission of Deutsches Institut ftir Kautschute Technologie, Hannover...
Brack [81] has illustrated the analysis of antioxidants in a CB-free vulcanisate of unknown composition according to Scheme 2.7. Some components detected by off-line TD-GC-MS (cyclohexylamine, aniline and benzothiazole) were clearly indicative of the CBS accelerator other TD components were identified as the antioxidants BHT, 6PPD, Vulcanox BKF and the antiozonant Vulkazon AFS. In the methanol extract also the stabiliser ODPA was identified. The presence of an aromatic oil was clearly derived from the GC-MS spectra of the thermal and methanol extracts. The procedure is very similar to that of Scheme 2.3. [Pg.41]

Okumoto [89] has reported an analytical scheme (Scheme 2.8) for automotive rubber products (ENB-EPDM vulcanisates). For high-resolution PyGC analysis, organic additives are first removed from the rubber/(CB, inorganics) formulation. Carbon-black and inorganic material hardly interfere with pyrolysis. For the analysis of the additives the extracted soluble... [Pg.41]

Scheme 2.8 Analysis of vulcanised rubbers. After Okumoto [89]. Reproduced by permission of the author... Scheme 2.8 Analysis of vulcanised rubbers. After Okumoto [89]. Reproduced by permission of the author...
Applications Shake-flask extraction nowadays finds only limited application in polymer/additive analysis. Carlson et al. [108] used this technique to extract antioxidants from rubber vulcanisates for identification purposes (NMR, IR, MS). Wrist-action shaking at room temperature was also used as the sample preparation step for the UV and IR determination of Ionol CP, Santonox R and oleamide extracted from pelletised polyethylene using different solvents [78]. BHT could be extracted in 98 % yield from powdered PP by shaking at room temperature for 30 min with carbon disulfide. [Pg.66]

Much of this work does not represent current practice particularly with regard to the stationary phases. The analysis of AOs and vulcanisation accelerators in rubber materials by GC, HPLC and TLC was reviewed... [Pg.197]

Applications Conventional TLC was the most successful separation technique in the 1960s and early 1970s for identification of components in plastics. Amos [409] has published a comprehensive review on the use of TLC for various additive types (antioxidants, stabilisers, plasticisers, curing agents, antistatic agents, peroxides) in polymers and rubber vulcanisates (1973 status). More recently, Freitag [429] has reviewed TLC applications in additive analysis. TLC has been extensively applied to the determination of additives in polymer extracts [444,445]. [Pg.227]

Phenolic antioxidants in rubber extracts were determined indirectly photometrically after reaction with Fe(III) salts which form a red Fe(II)-dipyridyl compound. The method was applicable to Vulkanox BKF and Vulkanox KB [52]. Similarly, aromatic amines (Vulkanox PBN, 4020, DDA, 4010 NA) were determined photometrically after coupling with Echtrotsalz GG (4-nitrobenzdiazonium fluoroborate). For qualitative analysis of vulcanisation accelerators in extracts of rubbers and elastomers colour reactions with dithio-carbamates (for Vulkacit P, ZP, L, LDA, LDB, WL), thiuram derivatives (for Vulkacit I), zinc 2-mercaptobenzthiazol (for Vulkacit ZM, DM, F, AZ, CZ, MOZ, DZ) and hexamethylene tetramine (for Vulkacit H30), were mentioned as well as PC and TLC analyses (according to DIN 53622) followed by IR identification [52]. 8-Hydroquinoline extraction of interference ions and alizarin-La3+ complexation were utilised for the spectrophotometric determination of fluorine in silica used as an antistatic agent in PE [74], Also Polygard (trisnonylphenylphosphite) in styrene-butadienes has been determined by colorimetric methods [75,76], Most procedures are fairly dated for more detailed descriptions see references [25,42,44],... [Pg.311]

Stabilisers are usually determined by a time-consuming extraction from the polymer, followed by an IR or UV spectrophotometric measurement on the extract. Most stabilisers are complex aromatic compounds which exhibit intense UV absorption and therefore should show luminescence in many cases. The fluorescence emission spectra of Irgafos 168 and its phosphate degradation product, recorded in hexane at an excitation wavelength of 270 nm, are not spectrally distinct. However, the fluorescence quantum yield of the phosphate greatly exceeds that of the phosphite and this difference may enable quantitation of the phosphate concentration [150]. The application of emission spectroscopy to additive analysis was illustrated for Nonox Cl (/V./V -di-/i-naphthyl-p-phcnylene-diamine) [149] with fluorescence ex/em peaks at 392/490 nm and phosphorescence ex/em at 382/516 nm. Parker and Barnes [151] have reported the use of fluorescence for the determination of V-phenyl-l-naphthylamine and N-phenyl-2-naphthylamine in extracted vulcanised rubber. While pine tar and other additives in the rubber seriously interfered with the absorption spectrophotometric method this was not the case with the fluoromet-ric method. [Pg.322]

In a study on the identification of organic additives in rubber vulcanisates using mass spectrometry, Lattimer et al. [22] used direct thermal desorption with three different ionisation methods El, Cl and FI. Also, rubber extracts were examinated directly by four ionisation methods (El, Cl, FD and FAB). The authors did not report a clear advantage for direct analysis as compared to analysis after extraction. Direct analysis was a little faster, but the extraction methods were considered to be more versatile. [Pg.364]

FAB has been used to analyse additives in (un) vulcanised elastomer systems [92,94] and FAB matrices have been developed which permit the direct analysis of mixtures of elastomer additives without chromatographic separation. The T-156 triblend vulcanised elastomer additives poly-TMDQ (AO), CTP (retarder), HPPD (antiozonant), and TMTD, OBTS, MBT and A,lV-diisopropyl-2-benzothiazylsulfenamide (accelerators) were studied in three matrix solutions (glycerol, oleic acid, and NPOE) [94]. The thiuram class of accelerators were least successful. Mixture analysis of complex rubber vulcanisates without chromatographic separation was demonstrated. The differentiation of matrix ions from sample ions was enhanced by use of high-resolution acquisition. [Pg.371]

Recently, Lattimer et al. [22,95] advocated the use of mass spectrometry for direct analysis of nonvolatile compounding agents in polymer matrices as an alternative to extraction procedures. FAB-MS was thus applied as a means for surface desorption/ionisation of vulcanisates. FAB is often not as effective as other ionisation methods (El, Cl, FI, FD), and FAB-MS is not considered particularly useful for extracted rubber additives analysis compared to other methods that are available [36], The effectiveness of the FAB technique has been demonstrated for the analysis of a live-component additive mixture [96]. [Pg.371]

FD-MS by itself provides only limited chemical information. Lattimer et al. [92] have also compared the analysis of extracted rubber vulcanisates by means of FD-MS and FAB-MS, using the aforementioned EI/FD/FT/FAB ion source. The systems investigated were neoprene/DOPPD, EPDM/(DOP, PBNA, paraffin wax), neoprene-SBR blend/(DOP, DOPPD, TDBHI). Certain compounds were observed by FD but not by FAB (wax, oil, isocyanurate antioxidant TDBHI). In FAB conditions some polymer additives suppress... [Pg.375]

Off-line coupling of HPLC with FD-MS has been used by several authors [118-121] for the determination of oligomers, oligomeric antioxidants (such as poly-TMDQ), ozonation and vulcanisation products. Pausch [122] reported on rubbers, cyclic polyurethane oligomers, as well as on the determination of the molecular weight distribution (up to 5300 Da) and oligomer analysis of polystyrene. Also the components of an aniline-acetone resin were deduced from FD-MS molecular weights [122]. [Pg.376]

Analysis of solid matter, in particular of rubber vulcanisates, is a classical application of DP-MS [263]. [Pg.413]

Ostromow [328] has described the use of conductometry for the analysis of extracts from elastomers and rubbers, such as the determination of various vulcanisation accelerations dithiocarbamates, thiurams (tetramethylthiuramdisulfide, tetramethylthiurammono-sulfide), 2-mercaptobenzothiazole, diphenylguanidine... [Pg.667]

Consideration is given to the toxicity of nitrosamines formed during rubber vulcanisation in the presence of certain accelerators, the mechanisms by which they are formed, and French, German and European Union regulations relating to nitrosamines in the workplace atmosphere and in rubber products. Methods used in the sampling and analysis of nitrosamines are also described. 6 refs. [Pg.76]


See other pages where Vulcanisates, analysis is mentioned: [Pg.257]    [Pg.257]    [Pg.17]    [Pg.20]    [Pg.33]    [Pg.34]    [Pg.35]    [Pg.35]    [Pg.40]    [Pg.41]    [Pg.74]    [Pg.98]    [Pg.195]    [Pg.227]    [Pg.227]    [Pg.229]    [Pg.250]    [Pg.334]    [Pg.362]    [Pg.370]    [Pg.375]    [Pg.412]    [Pg.413]    [Pg.413]    [Pg.672]    [Pg.672]    [Pg.777]    [Pg.433]   


SEARCH



VULCANISED

Vulcanisation

Vulcanising

© 2024 chempedia.info