Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conventional rubber

These are typically built on a polyester base membrane (PETP, 35 pm, copper-laminated) with a polyester spacer membrane, safety chamber and front membrane. The snap disc being gold plated stainless steel. Other designs use electrical contacts made from silver, silver on carbon or carbon only. Keypads may also be made from conductive silicone rubber. Conventional computer keyboards made from ABS, polyester or other polymers, may be covered by a polymer overlay to protect it against dirt, dust, water or other substance present in a hostile environment. Polyester and PVC overlays are used in a wide variety of applications with computer and instrumentation equipment in dental and medical healthcare and other areas. Typical casing materials include PC and polychloroprene. [Pg.35]

Ethylene—Propylene Rubber. Ethylene and propjiene copolymerize to produce a wide range of elastomeric and thermoplastic products. Often a third monomer such dicyclopentadiene, hexadiene, or ethylene norbomene is incorporated at 2—12% into the polymer backbone and leads to the designation ethylene—propylene—diene monomer (EPDM) mbber (see Elastomers, synthetic-ethylene-propylene-diene rubber). The third monomer introduces sites of unsaturation that allow vulcanization by conventional sulfur cures. At high levels of third monomer it is possible to achieve cure rates that are equivalent to conventional mbbers such as SBR and PBD. Ethylene—propylene mbber (EPR) requires peroxide vulcanization. [Pg.232]

Examples of Cure Systems in NR, SBR, and Nitrile Rubber. Table 6 offers examples of recipes for conventional, semi-EV, and EV cure systems ia a simple, carbon black-filled natural mbber compound cured to optimum (t90) cure. The distribution of cross-links obtained is found ia Figure 9 (24). [Pg.239]

Fig. 11. Aging properties of cured natural rubber for 70 hours at 70°C. A is the conventional, B the semi-KV, and C the EV system where U shows tensile... Fig. 11. Aging properties of cured natural rubber for 70 hours at 70°C. A is the conventional, B the semi-KV, and C the EV system where U shows tensile...
Cure Systems of Butyl Rubber and EPDM. Nonhalogenated butyl rubber is a copolymer of isobutjiene with a small percentage of isoprene which provides cross-linking sites. Because the level of unsaturation is low relative to natural mbber or SBR, cure system design generally requites higher levels of fast accelerators such as the dithiocarbamates. Examples of typical butyl mbber cure systems, thein attributes, and principal appHcations have been reviewed (26). Use of conventional and semi-EV techniques can be used in butyl mbber as shown in Table 7 (21). [Pg.241]

Table 7. Conventional and Semi-EV Cure Systems for Butyl Rubber ... Table 7. Conventional and Semi-EV Cure Systems for Butyl Rubber ...
Eield latex and field coagulum are the source materials for all varieties and grades of dry natural mbber that include the conventional International grades as weH as the Technically Specified Rubbers (TSR). [Pg.265]

Dielectric dryers have not as yet found a wide field of application. Their fundamental characteristic of generating heat within the solid indicates potentialities for diying massive geometrical objects such as wood, sponge-rubber shapes, and ceramics. Power costs may range to 10 times the fuel costs of conventional methods. [Pg.1186]

The conventionally covalently cross-linked rubbers and plastics cannot dissolve without chemical change. They will, however, swell in solvents of similar solubility parameter, the degree of swelling decreasing with increase in cross-link density. The solution properties of the thermoelastomers which are two-phase materials are much more complex, depending on whether or not the rubber phase and the resin domains are dissolved by the solvent. [Pg.87]

Butadiene and styrene may be polymerised in any proportion. The Tfs of the copolymers vary in an almost linear manner with the proportion of styrene present. Whereas SBR has a styrene content of about 23.5% and is rubbery, copolymers containing about 50% styrene are leatherlike whilst with 70% styrene the materials are more like rigid thermoplastics but with low softening points. Both of these copolymers are known in the rubber industry as high-styrene resins and are usually used blended with a hydrocarbon rubber such as NR or SBR. Such blends have found use in shoe soles, car wash brushes and other mouldings but in recent times have suffered increasing competition from conventional thermoplastics and to a less extent the thermoplastic rubbers. [Pg.294]

The rubbers may be vulcanised by conventional accelerated sulphur systems and also by peroxides. The vulcanisates are widely used in petrol hose and seal applications. Two limiting factors of the materials as rubbers are the tendency to harden in the presence of sulphur-bearing oils, particularly at elevated temperatures (presumably due to a form of vulcanisation), and the rather limited heat resistance. The latter may be improved somewhat by Judicious compounding to give vulcanisates that may be used up to 150°C. When for the above reasons nitrile rubbers are unsatisfactory it may be necessary to consider acrylic rubbers (Chapter 15), epichlorohydrin rubbers (Chapter 19) and in more extreme conditions fluororubbers (Chapter 13). [Pg.294]

Hydrogenated nitrile rubbers were introduced in the mid-1980s as Therban by Bayer. The initial grade had an acrylonitrile content of only 17% instead of approx. 34% in conventional NBR. Whilst non-sulphur-curing systems such as the use of peroxides with triallyl cyanurate or isocyanurate are necessary, the saturated rubber has a number of advantages over NBR. These include improved... [Pg.294]

It is somewhat difficult conceptually to explain the recoverable high elasticity of these materials in terms of flexible polymer chains cross-linked into an open network structure as commonly envisaged for conventionally vulcanised rubbers. It is probably better to consider the deformation behaviour on a macro, rather than molecular, scale. One such model would envisage a three-dimensional mesh of polypropylene with elastomeric domains embedded within. On application of a stress both the open network of the hard phase and the elastomeric domains will be capable of deformation. On release of the stress, the cross-linked rubbery domains will try to recover their original shape and hence result in recovery from deformation of the blended object. [Pg.303]

Polynorbomene is also of interest to the plastics processor since by using a dry blending process for mixing and a modified injection moulding process for fabricating, the use of conventional rubber-processing equipment may be avoided. [Pg.307]

The brittleness of isotactic polystyrenes has hindered their commercial development. Quoted Izod impact strengths are only 20% that of conventional amorphous polymer. Impact strength double that of the amorphous material has, however, been claimed when isotactic polymer is blended with a synthetic rubber or a polyolefin. [Pg.454]

Vulcanisation can be effected by diamines, polyamines and lead compounds such as lead oxides and basic lead phosphite. The homopolymer vulcanisate is similar to butyl rubber in such characteristics as low air permeability, low resilience, excellent ozone resistance, good heat resistance and good weathering resistance. In addition the polyepichlorohydrins have good flame resistance. The copolymers have more resilience and lower brittle points but air impermeability and oil resistance are not so good. The inclusion of allyl glycidyl ether in the polymerisation recipe produces a sulphur-curable elastomer primarily of interest because of its better resistance to sour gas than conventional epichlorhydrin rubbers. [Pg.548]

With a typical of 25 000-30000 the molecular size is low compared wjth most conventional covalently cross-linked elastomers. With such rubbers values of about 100000 are desirable so that the effects of a significant amount of non-load-bearing chain ends do not occur. Such a problem does not arise in block copolymers terminated by hard segments. [Pg.738]

In spite of their somewhat high price relative to most conventional rubbers these materials have become widely accepted as engineering rubbers in such applications as seals, belting, water hose and even low-pressure tyres. [Pg.739]

Some typical properties of a Vulkollan-type polyurethane cast rubber and a black-reinforced polyurethane rubber processed by conventional techniques are compared with black-reinforced natural and nitrile rubbers in Table 27.2 ... [Pg.788]

The important properties of the rubbers are their temperature stability, retention of elasticity at low temperatures and good electrical properties. They are much more expensive than the conventional rubbers (e.g. natural rubber and SBR) and have inferior mechanical properties at room temperature. [Pg.838]

The early 1980s saw considerable interest in a new form of silicone materials, namely the liquid silicone mbbers. These may be considered as a development from the addition-cured RTV silicone rubbers but with a better pot life and improved physical properties, including heat stability similar to that of conventional peroxide-cured elastomers. The ability to process such liquid raw materials leads to a number of economic benefits such as lower production costs, increased ouput and reduced capital investment compared with more conventional rubbers. Liquid silicone rubbers are low-viscosity materials which range from a flow consistency to a paste consistency. They are usually supplied as a two-pack system which requires simple blending before use. The materials cure rapidly above 110°C and when injection moulded at high temperatures (200-250°C) cure times as low as a few seconds are possible for small parts. Because of the rapid mould filling, scorch is rarely a problem and, furthermore, post-curing is usually unnecessary. [Pg.839]

All three types of material have now been available for some years and it is probably also true that none have yet realised their early promise. In the case of the thermoplastic elastomers most of the commercial materials have received brief mention in earlier chapters, and when preparing earlier editions of this book the author was of the opinion that such materials were more correctly the subject of a book on rubbery materials. However, not only are these materials processed on more or less standard thermoplastics processing equipment, but they have also become established in applications more in competition with conventional thermoplastics rather than with rubbers. [Pg.874]

It was pointed out in Chapter 3 that conventional vulcanised rubbers were composed of highly flexible long chain molecules with light cross-linking... [Pg.874]

In general, the thermoplastic elastomers have yet to achieve the aim of replacing general purpose vulcanised rubbers. They have replaced rubbers in some specialised oil-resistant applications but their greatest growth has been in developing materials of consistency somewhat between conventional rubbers and hard thermoplastics. A number of uses have also been developed outside the field of conventional rubber and plastics technology. [Pg.878]

Another common device used in the rubber industry is the thin film evaporator. This device is very often used in the manufacture of ultra-low molecular weight elastomers that are used in sealant applications or specialty coatings, and as processing aids in conventional rubber compounding processes. The thin film evaporator described earlier, has found a multitude of other industry applications, including food processing operations. [Pg.143]


See other pages where Conventional rubber is mentioned: [Pg.483]    [Pg.254]    [Pg.130]    [Pg.483]    [Pg.254]    [Pg.130]    [Pg.117]    [Pg.399]    [Pg.240]    [Pg.246]    [Pg.259]    [Pg.265]    [Pg.266]    [Pg.267]    [Pg.271]    [Pg.11]    [Pg.17]    [Pg.1681]    [Pg.278]    [Pg.288]    [Pg.305]    [Pg.306]    [Pg.788]    [Pg.788]    [Pg.840]    [Pg.878]    [Pg.880]    [Pg.824]    [Pg.110]   
See also in sourсe #XX -- [ Pg.41 ]




SEARCH



Conventional rubber nanocomposites

Natural rubber nanocomposites conventional

Silica-Filled Conventional Rubbers

© 2024 chempedia.info