Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin renal reabsorption

Parathyroid hormone, a polypeptide of 83 amino acid residues, mol wt 9500, is produced by the parathyroid glands. Release of PTH is activated by a decrease of blood Ca " to below normal levels. PTH increases blood Ca " concentration by increasing resorption of bone, renal reabsorption of calcium, and absorption of calcium from the intestine. A cAMP mechanism is also involved in the action of PTH. Parathyroid hormone induces formation of 1-hydroxylase in the kidney, requited in formation of the active metabolite of vitamin D (see Vitamins, vitamin d). [Pg.376]

Hydroxy vitamin D pools ia the blood and is transported on DBF to the kidney, where further hydroxylation takes place at C-1 or C-24 ia response to calcium levels. l-Hydroxylation occurs primarily ia the kidney mitochondria and is cataly2ed by a mixed-function monooxygenase with a specific cytochrome P-450 (52,179,180). 1 a- and 24-Hydroxylation of 25-hydroxycholecalciferol has also been shown to take place ia the placenta of pregnant mammals and ia bone cells, as well as ia the epidermis. Low phosphate levels also stimulate 1,25-dihydtoxycholecalciferol production, which ia turn stimulates intestinal calcium as well as phosphoms absorption. It also mobilizes these minerals from bone and decreases their kidney excretion. Together with PTH, calcitriol also stimulates renal reabsorption of the calcium and phosphoms by the proximal tubules (51,141,181—183). [Pg.136]

There are numerous abnormalities of cysteine metabolism. Cystine, lysine, arginine, and ornithine are excreted in cystine-lysinuria (cystinuria), a defect in renal reabsorption. Apart from cystine calculi, cystinuria is benign. The mixed disulfide of L-cysteine and L-homocysteine (Figure 30-9) excreted by cystinuric patients is more soluble than cystine and reduces formation of cystine calculi. Several metabolic defects result in vitamin Bg-responsive or -unresponsive ho-mocystinurias. Defective carrier-mediated transport of cystine results in cystinosis (cystine storage disease) with deposition of cystine crystals in tissues and early mortality from acute renal failure. Despite... [Pg.250]

Vitamin D hormone is derived from vitamin D (cholecalciferol). Vitamin D can also be produced in the body it is formed in the skin from dehydrocholesterol during irradiation with UV light. When there is lack of solar radiation, dietary intake becomes essential, cod liver oil being a rich source. Metaboli-cally active vitamin D hormone results from two successive hydroxylations in the liver at position 25 ( calcifediol) and in the kidney at position 1 ( calci-triol = vit. D hormone). 1-Hydroxylation depends on the level of calcium homeostasis and is stimulated by parathormone and a fall in plasma levels of Ca or phosphate. Vit D hormone promotes enteral absorption and renal reabsorption of Ca and phosphate. As a result of the increased Ca + and phosphate concentration in blood, there is an increased tendency for these ions to be deposited in bone in the form of hydroxyapatite crystals. In vit D deficiency, bone mineralization is inadequate (rickets, osteomalacia). Therapeutic Liillmann, Color Atlas of Pharmacology... [Pg.264]

It is now well established that l,25-(OH)2D3 is the active hormonal form of vitamin D3 [32], The production of l,25-(OH)2D3 in the kidney is regulated by dietary calcium and phosphate and also by changes in serum calcium and parathyroid hormone, which clearly highlight the hormonal nature of this compound. Functionally, the three classical actions of l,25-(OH)2D3 are to stimulate intestinal calcium and independently phosphate absorption, the mobilization of calcium from bone, and increase renal reabsorption of calcium. The focus of this review will be to explore the most recent concepts of vitamin D in regard to its metabolism and physiology, and with respect to the medicinal applications of vitamin D3 metabolites and analogues. [Pg.5]

Parathyroid Hormone Parathyroid hormone raises plasma calcium by direct effects on bone resorption and renal reabsorption of calcium, and indirectly by regulating the metabolism of vitamin D. It is a peptide and acts via cell surface G-protein receptors linked to adenylate cyclase. The parathyroid glands have G-protein cell surface calcium receptors linked to phospholipase G, and parathyroid hormone is secreted in response to hypocalcemia. Magnesium is required for secretion of the hormone, which may explain the development of hypocalcemia in premature infants who are magnesium deficient. [Pg.88]

The plasma concentration of the biotin does not provide a sensitive index of stams, at least partly because there is increased renal reabsorption of the vitamin as intake falls. Urinary excretion of biotin and its metabolites is more sensitive, but may be confounded by changes in biotin excretion caused by glucocorticoid hormones (McMahon, 2002). There are three sensitive markers of stams (Mock, 1999) ... [Pg.340]

Some attention has been focused on a possible role of vitamin D in renal reabsorption of phosphate. Although early work suggested a vitamin D stimulated increase in renal reabsorption of phosphate, this appeared the result of an ad-justment of parathyroid glands and not a direct effect of vitamin D on renal reabsorption of phosphate. More recent attempts utilizing the metabolites of vitamin D are also not convincing since vitamin D-deficient animals were not used and thus pharmacological effects of the metabolites were studied. Other reports with rats have appeared which suggest but do not prove an effect of vitamin D on the reabsorption of phosphate ... [Pg.31]

It is well known that vitamin D increases serum phosphate levels of rachitic rats which is in turn responsible for the mineralization of bone The source of the phosphate has been examined in rats on extremely low phosphorus diets so that intestinal absorption would be a minor factor The response to 1, 25<0H)2D3 was found to the same extent in these animals as in those on a 0.1% phosphorus diet. Increased renal reabsorption of phosphate was excluded by direct examination ... [Pg.31]

General metabolic significance. Vitamin D stimulates intestinal absorption of calcium and phosphate, renal reabsorption of these ions, deposition and mobilization of minerals in the hard tissue, controlling normal calcium and phosphate blood level by means of these processes. Molecular mechanism of the vitamin D effects most frequently conform to the effect of steroid hormones (induction of protein biosynthesis). [Pg.4891]

Low phosphate levels, that is, levels less than 3.0 mg/dL (4.0 mg/dL in children) or 0.97 mmol/L (1.45 mmol/L in children), may result from poor absorption such as occurs with ingestion of antacids that bind to phosphate. Phosphate may be decreased with reduced renal reabsorption often secondary to high levels of parathyroid hormone (PTH), which causes a retention of calcium and loss of phosphate through the kidneys, or in high calcium levels and vitamin D deficiency. Low serum phosphate levels may be noted in alkalosis because phosphate is shifted into the cells to buffer the pH. [Pg.74]

If vitamin D has no effect on calcium absorption, it does affect calcium mobilization and thereby restores plasma concentrations of calcium. This finding explains why vitamin D deficiency was associated with hypocalcemia. The effect on the bone seems to require a synergetic action of vitamin D and parathormone. The 1,25-hydroxylated derivative seems to be the major active compound causing calcium release from the bone. The 25-hydroxyl derivative has, however, been shown to be active as well. Finally, vitamin D increases renal proximal tubular reabsorption of phosphate in normal and vitamin D deficient animals. Consequently phosphate excretion is decreased. Inasmuch as this effect occurs in parathyroidectomized animals, the effect of vitamin D or its metabolites must be direct. Again, the active metabolites are the 25 and 1,25-hydroxy derivatives. A calcium binding protein has been isolated from the kidney cortex, but its role in renal reabsorption is not known. [Pg.345]

The a ns wer is a. (Hardman, pp 1525-1528.) Pa r a thyroid ho r m o ne is synthesized by and released from the parathyroid gland increased synthesis of PTI1 is a response to low serum Ca concentrations. Resorption and mobilization of Ca and phosphate from bone are increased in response to elevated PTI1 concentrations. Replacement of body stores of Ca is enhanced by the capacity of PTH to promote increased absorption of Ca by the small intestine in concert with vitamin D, which is the primary factor that enhances intestinal Ca absorption. Parathyroid hormone also causes an increased renal tubular reabsorption of Ca and excretion of phosphate. As a consequence of these effects, the extracellular Ca concentration becomes elevated. [Pg.257]

Cholecalciferol Regulate gene transcription via the vitamin D receptor Stimulate intestinal calcium absorption, bone resorption, renal calcium and phosphate reabsorption decrease parathyroid hormone (PTH) promote innate immunity inhibit adaptive immunity Osteoporosis, osteomalacia, renal failure, malabsorption Hypercalcemia, hypercalciuria the vitamin D preparations have much longer half-life than the metabolites and analogs... [Pg.974]

Q7 Calcium is present in both intracellular fluid (ICF) and ECF, but the concentration in the ECF is twice as high as that in the ICF. Calcium is found in both ionized and bound forms, and Ca2+ homeostasis is mainly controlled by parathyroid hormone, which increases absorption of calcium in the intestine and reabsorption in the nephron. Calcitonin also affects ECF calcium concentration by promoting renal excretion when there is an excess of calcium in the body. The normal kidney filters and reabsorbs most of the filtered calcium however, in renal disease this is reduced and blood calcium decreases. Calcium and phosphate imbalance can occur in patients with renal failure, leading to osteomalacia (defective mineralization of bone). Osteomalacia is mainly due to reduced production of 1,25-dihydroxycholecalciferol, an active form of vitamin D metabolized in the kidney. Deficiency of 1,25-dihydroxycholecalciferol reduces the absorption of calcium salts by the intestine. [Pg.236]

The principal physiological role of vitamin D is in the maintenance of the plasma concentration of calcium. Calcitriol acts to increase intestinal absorption of calcium, to reduce its excretion by increasing reabsorption in the distal renal tubule, and to mobilize the mineral from bone - of the 25 mol of calcium in the adult body, 99% is in bone. The daily intake of calcium is around 25 mmol, and intestinal secretions add an additional 7 mmol to the intestinal contents 10 to 14 mmol of this is normally absorbed, with 18 to 22 mmol excreted in feces. Bone turnover accounts for exchange of 10 mmol of calcium between bone and plasma daily. The kidneys filter some 240 mmol of calcium daily, almost all of which is reabsorbed urinary excretion of calcium is about 3 to 7 mmol per day. [Pg.89]

Riboflavin and riboflavin phosphate that are not bound to plasma proteins are filtered at the glomerulus the phosphate is generally dephosphorylated in the bladder. Renal tubular reabsorption of riboflavin is saturated at normal plasma concentrations, and there is also active tubular secretion of the vitamin, so that urinary clearance of riboflavin can be two- to three-fold greater than the glomerular filtration rate. [Pg.179]


See other pages where Vitamin renal reabsorption is mentioned: [Pg.299]    [Pg.31]    [Pg.34]    [Pg.272]    [Pg.74]    [Pg.303]    [Pg.97]    [Pg.279]    [Pg.134]    [Pg.222]    [Pg.223]    [Pg.148]    [Pg.331]    [Pg.271]    [Pg.303]    [Pg.352]    [Pg.105]    [Pg.1466]    [Pg.817]   
See also in sourсe #XX -- [ Pg.364 ]

See also in sourсe #XX -- [ Pg.364 ]

See also in sourсe #XX -- [ Pg.364 ]




SEARCH



Reabsorption

Renal Vitamin

© 2024 chempedia.info