Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium intestines

M (blockage of calcium intestinal transport response to vitamin D)... [Pg.143]

More than 40 years ago, calcium absorption from brown (whole wheat) bread which was fed to human subjects was found to be poorer than was that when white (extracted wheat flour) was fed 04,5). Since then, many studies have sought to define the extent of inhibition of calcium intestinal bioavailability by various forms of dietary fiber with mixed results and conclusions (6-18). [Pg.175]

Lipids present in the diet may become rancid. When fed at high (>4-6%) levels, Hpids may decrease diet acceptabiUty, increase handling problems, result in poor pellet quaUty, cause diarrhea, reduce feed intake, and decrease fiber digestion in the mmen (5). To alleviate the fiber digestion problem, calcium soaps or prilled free fatty acids have been developed to escape mminal fermentation. These fatty acids then are available for absorption from the small intestine (5). Feeding whole oilseeds also has alleviated some of the problems caused by feeding Hpids. A detailed discussion of Hpid metaboHsm by mminants can be found (16). [Pg.156]

Vitamins A, D, and E are required by mminants and, therefore, their supplementation is sometimes necessary. Vitamin A [68-26-8] is important in maintaining proper vision, maintenance and growth of squamous epitheHal ceUs, and bone growth (23). Vitamin D [1406-16-2] is most important for maintaining proper calcium absorption from the small intestine. It also aids in mobilizing calcium from bones and in optimizing absorption of phosphoms from the small intestine (23). Supplementation of vitamins A and D at their minimum daily requirement is recommended because feedstuffs are highly variable in their content of these vitamins. [Pg.156]

Contraction of muscle follows an increase of Ca " in the muscle cell as a result of nerve stimulation. This initiates processes which cause the proteins myosin and actin to be drawn together making the cell shorter and thicker. The return of the Ca " to its storage site, the sarcoplasmic reticulum, by an active pump mechanism allows the contracted muscle to relax (27). Calcium ion, also a factor in the release of acetylcholine on stimulation of nerve cells, influences the permeabiUty of cell membranes activates enzymes, such as adenosine triphosphatase (ATPase), Hpase, and some proteolytic enzymes and facihtates intestinal absorption of vitamin B 2 [68-19-9] (28). [Pg.376]

Blood Calcium Ion Level. In normal adults, the blood Ca " level is estabhshed by an equiUbrium between blood Ca " and the more soluble intercrystalline calcium salts of the bone. Additionally, a subtle and intricate feedback mechanism responsive to the Ca " concentration of the blood that involves the less soluble crystalline hydroxyapatite comes into play. The thyroid and parathyroid glands, the fiver, kidney, and intestine also participate in Ca " control. The salient features of this mechanism are summarized in Figure 2 (29—31). [Pg.376]

Parathyroid hormone, a polypeptide of 83 amino acid residues, mol wt 9500, is produced by the parathyroid glands. Release of PTH is activated by a decrease of blood Ca " to below normal levels. PTH increases blood Ca " concentration by increasing resorption of bone, renal reabsorption of calcium, and absorption of calcium from the intestine. A cAMP mechanism is also involved in the action of PTH. Parathyroid hormone induces formation of 1-hydroxylase in the kidney, requited in formation of the active metabolite of vitamin D (see Vitamins, vitamin d). [Pg.376]

Calcium is absorbed from the intestine by facilitated diffusion and active transport. In the former, Ca " moves from the mucosal to the serosal compartments along a concentration gradient. The active transport system requires a cation pump. In both processes, a calcium-binding protein (CaBP) is thought to be required for the transport. Synthesis of CaBP is activated by 1,25-DHCC. In the active transport, release of Ca " from the mucosal cell into... [Pg.376]

One method of treatment is to inject calcitonin, which decreases blood Ca " concentration and increases bone calcification (33). Another is to increase the release of calcitonin into the blood by increasing the blood level of Ca " ( 4). This latter treatment is accompHshed by increasing Ca " absorption from the intestine requiring dietary calcium supplements and avoidance of high phosphate diets. The latter decrease Ca " absorption by precipitation of the insoluble calcium phosphate. [Pg.377]

Health and Safety Factors. The strontium ion has a low order of toxicity, and strontium compounds are remarkably free of toxic hazards. Chemically, strontium is similar to calcium, and strontium salts, like calcium salts, are not easily absorbed by the intestinal tract. Strontium carbonate has no commonly recognized hazardous properties. Strontium nitrate is regulated as an oxidizer that promotes rapid burning of combustible materials, and it should not be stored in areas of potential fire hazards. [Pg.474]

Pantothenic acid toxicity has not been reported in humans. Massive doses (10 g/d) in humans have produced mild intestinal distress and diarrhea. Acute toxicity was observed in case of mice and rats by using calcium pantothenate at fairly large doses (92). [Pg.63]

Calcium-binding protein is not found in the intestinal mucosa of vitamin D-deficient animals. It is synthesized only in response to the presence of a material with vitamin D activity. Thus, using antisemm specific to intestinal calcium-binding protein, a radioimmunodiffusion assay (98) conducted on ... [Pg.133]

Hydroxy vitamin D pools ia the blood and is transported on DBF to the kidney, where further hydroxylation takes place at C-1 or C-24 ia response to calcium levels. l-Hydroxylation occurs primarily ia the kidney mitochondria and is cataly2ed by a mixed-function monooxygenase with a specific cytochrome P-450 (52,179,180). 1 a- and 24-Hydroxylation of 25-hydroxycholecalciferol has also been shown to take place ia the placenta of pregnant mammals and ia bone cells, as well as ia the epidermis. Low phosphate levels also stimulate 1,25-dihydtoxycholecalciferol production, which ia turn stimulates intestinal calcium as well as phosphoms absorption. It also mobilizes these minerals from bone and decreases their kidney excretion. Together with PTH, calcitriol also stimulates renal reabsorption of the calcium and phosphoms by the proximal tubules (51,141,181—183). [Pg.136]

Although it is being found that vitamin D metaboUtes play a role ia many different biological functions, metaboHsm primarily occurs to maintain the calcium homeostasis of the body. When calcium semm levels fall below the normal range, 1 a,25-dihydroxy-vitainin is made when calcium levels are at or above this level, 24,25-dihydroxycholecalciferol is made, and 1 a-hydroxylase activity is discontiaued. The calcium homeostasis mechanism iavolves a hypocalcemic stimulus, which iaduces the secretion of parathyroid hormone. This causes phosphate diuresis ia the kidney, which stimulates the 1 a-hydroxylase activity and causes the hydroxylation of 25-hydroxy-vitamin D to 1 a,25-dihydroxycholecalciferol. Parathyroid hormone and 1,25-dihydroxycholecalciferol act at the bone site cooperatively to stimulate calcium mobilization from the bone (see Hormones). Calcium blood levels are also iafluenced by the effects of the metaboUte on intestinal absorption and renal resorption. [Pg.137]

Clinical stresses which interfere with vitamin metabohsm, can result in calcium deficiency leading to osteomalacia and osteoporosis (secondary vitamin D deficiency). These stresses include intestinal malabsorption (lack of bile salts) stomach bypass surgery obstmctive jaundice alcoholism Hver or kidney failure decreasing hydroxylation of vitamin to active forms inborn error of metabohsm and use of anticonverdiants that may lead to increased requirement. [Pg.137]

The overall effect in most animals is to stimulate intestinal absorption of calcium with a concomitant increase in semm calcium and a reduction in parathyroid hormone (PTH). Modest hypercalcemia allows the glomerular filtration rate to remain stable and hypercalciuria to occur because of increased filtered load of calcium and reduction of tubular resorption of calcium with reduced PTH. However, with further increases in semm calcium, the glomerular filtration rate decreases, resulting in an even more rapid increase in semm calcium and the subsequent fall in urinary calcium. [Pg.138]

Vitamin D withdrawal is an obvious treatment for D toxicity (219). However, because of the 5—7 d half-life of plasma vitamin D and 20—30 d half-life of 25-hydroxy vitamin D, it may not be immediately successful. A prompt reduction in dietary calcium is also indicated to reduce hypercalcemia. Sodium phytate can aid in reducing intestinal calcium transport. Calcitonin glucagon and glucocorticoid therapy have also been reported to reduce semm calcium resulting from D intoxication (210). [Pg.138]

Soluble Compounds. The mechanism of barium toxicity is related to its ability to substitute for calcium in muscle contraction. Toxicity results from stimulation of smooth muscles of the gastrointestinal tract, the cardiac muscle, and the voluntary muscles, resulting in paralysis (47). Skeletal, arterial, intestinal, and bronchial muscle all seem to be affected by barium. [Pg.483]

Nonrepetitive but well-defined structures of this type form many important features of enzyme active sites. In some cases, a particular arrangement of coil structure providing a specific type of functional site recurs in several functionally related proteins. The peptide loop that binds iron-sulfur clusters in both ferredoxin and high potential iron protein is one example. Another is the central loop portion of the E—F hand structure that binds a calcium ion in several calcium-binding proteins, including calmodulin, carp parvalbumin, troponin C, and the intestinal calcium-binding protein. This loop, shown in Figure 6.26, connects two short a-helices. The calcium ion nestles into the pocket formed by this structure. [Pg.182]

Vitamin D is a family of closely related molecules that prevent rickets, a childhood disease characterized by inadequate intestinal absorption and kidney reabsorption of calcium and phosphate. These inadequacies eventually lead to the demineralization of bones. The symptoms of rickets include bowlegs,... [Pg.605]

The steroid hormone 1,25-dihydroxy vitamin D3 (calcitriol) slowly increases both intestinal calcium absorption and bone resorption, and is also stimulated through low calcium levels. In contrast, calcitonin rapidly inhibits osteoclast activity and thus decreases serum calcium levels. Calcitonin is secreted by the clear cells of the thyroid and inhibits osteoclast activity by increasing the intracellular cyclic AMP content via binding to a specific cell surface receptor, thus causing a contraction of the resorbing cell membrane. The biological relevance of calcitonin in human calcium homeostasis is not well established. [Pg.279]

Epithelial calcium channel 1 (ECaCl), synonym TRJPV5, is a member ofthe TRP family of ion channels, implicated in vitamin D-dependent transcellular Ca2+ transport in epithelial cells ofthe kidney, placenta and the intestine. [Pg.479]

A major regulator of bone metabolism and calcium homeostasis, parathyroid hormone (PTH) is stimulated through a decrease in plasma ionised calcium and increases plasma calcium by activating osteoclasts. PTH also increases renal tubular calcium re-absorption as well as intestinal calcium absorption. Synthetic PTH (1-34) has been successfully used for the treatment of osteoporosis, where it leads to substantial increases in bone density and a 60-70% reduction in vertebral fractures. [Pg.934]

Summary term for a number of steroid hormones and their precursors with differentiation-inducing activity in many tissues. As regards bone, three components are relevant cholecalciferol ( vitamin D ) 25-hydroxyvi-taminD3 (calcidiol) and 1,25-dihydroxy vitamin D3 (calcitriol). The latter is the biologically active form and increases both intestinal calcium absoiption and bone resorption. Vitamin D preparations are widely used for the treatment of osteoporosis. Daily supplementation with vitamin D reduces bone loss in postmenopausal women and hip fractures in elderly subjects. [Pg.1294]

More recent analysis of tissue specific gene deletions showed that the Cav1.2 channel is involved in a wide variety of function including hippocampal learning, insulin secretion, intestine and bladder motility. Further analysis will be required to unravel the functional significance of voltage-dependent calcium channels for specific cellular functions. [Pg.1304]

Calcium-binding proteins, 6, 564, 572, 596 intestinal, 6, 576 structure, 6, 573 Calcium carbonate calcium deposition as, 6, 597 Calcium complexes acetylacetone, 2, 372 amides, 2,164 amino acids, 3, 33 arsine oxides, 3, 9 biology, 6, 549 bipyridyl, 3, 13 crown ethers, 3, 39 dimethylphthalate, 3, 16 enzyme stabilization, 6, 549 hydrates, 3, 7 ionophores, 3, 66 malonic acid, 2, 444 peptides, 3, 33 phosphines, 3, 9 phthalocyanines, 2,863 porphyrins, 2, 820 proteins, 2, 770 pyridine oxide, 3,9 Schiff bases, 3, 29 urea, 3, 9... [Pg.97]

In addition to its role in regulating calcium homeostasis, vitamin D is required for the intestinal absorption of calcium. Synthesis of the intracellular calciumbinding protein, calbindin, required for calcium absorption, is induced by vitamin D, which also affects the permeability of the mucosal cells to calcium, an effect that is rapid and independent of protein synthesis. [Pg.477]

D Calciferol Maintenance of calcium balance enhances intestinal absorption of Ca and mobilizes bone mineral Rickets = poor mineralization of bone osteomalacia = bone demineralization... [Pg.482]

ARJMANDI B H, KHALIL D A and HOLLIS B w (2000) Ipiiflavone, a synthetic phytoestrogen, enhances intestinal calcium transport in vitro. Calcif Tissue Int 67, 225-29. [Pg.101]

ARJMANDI B H, SALIH M A, HERBERT D c, SIMS s H and KALU D N (1993) Evidence for estrogen receptor-linked calcium transport in the intestine. Bone and Mineral 21, 63-74. [Pg.101]


See other pages where Calcium intestines is mentioned: [Pg.75]    [Pg.75]    [Pg.157]    [Pg.375]    [Pg.136]    [Pg.34]    [Pg.35]    [Pg.35]    [Pg.606]    [Pg.606]    [Pg.1197]    [Pg.303]    [Pg.1143]    [Pg.97]    [Pg.477]    [Pg.477]    [Pg.485]    [Pg.89]    [Pg.97]    [Pg.97]   
See also in sourсe #XX -- [ Pg.596 ]

See also in sourсe #XX -- [ Pg.596 ]

See also in sourсe #XX -- [ Pg.6 , Pg.596 ]




SEARCH



Calcitonin Calcium, intestinal absorption

Calcium intestinal absorption

Intestinal calcium transport

Intestinal calcium transport assay for

Intestinal calcium transport role of vitamin

Intestinal calcium-binding protein

Intestine calcium absorption

Intestine calcium binding protein

Intestines calcium absorption, dietary requirements

Intestines calcium uptake

Vitamin intestinal calcium absorption

© 2024 chempedia.info