Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxy derivatives

Ordinary commercial camphor is (-i-)-cam phor, from the wood of the camphor tree. Cinnamonum camphora. Camphor is of great technical importance, being used in the manufacture of celluloid and explosives, and for medical purposes, /t is manufactured from pinene through bornyl chloride to camphene, which is either directly oxidized to camphor or is hydrated to isoborneol, which is then oxidized to camphor. A large number of camphor derivatives have been prepared, including halogen, nitro and hydroxy derivatives and sulphonic acids. [Pg.78]

The 7-chloro-derivative, the first of the group to be isolated (1948) is known as chlortetracy-cline. The 5-hydroxy-derivative is oxytetracy-dine. More recently introduced tetracyclines are 6-demethyl-7-chlorotetracycline and 5-hydroxy-6-deoxy-6-methyienetetracycline. [Pg.390]

Anthraquinone is of great technical importance, as many of its derivatives form valuable dyes notable among these are the hydroxy-derivatives (alizarin, etc.)y the amino-derivatives (indanthrene, etc.) and the sulphonic acids. [Pg.261]

Thus the condensation of dichloroether or chloroacetone fails to give the parent compound, 2-hydroxythiazole (158a), Rj = R2 = R3 = H (221). However, 2-hydroxythiazole can be obtained in 12% yield from chloro-acetaldehyde (386). The condensation of ammonium thiocarbamate with cf-chloroketones gives the corresponding 2-hydroxy derivatives in 25 to 70% yields (76, 221, 304, 412) (Table 11-24). These compounds condensed with ClP(S)(OEt)2 give the corresponding 2-thiazolyl-thiophosphates (791). [Pg.258]

The common names for the two hydroxy derivatives of naphthalene are 1 naph thol and 2 naphthol These are also acceptable lUPAC names... [Pg.994]

As a p hydroxy derivative of phenylalanine tyrosine has properties similar to those of phenylalanine plus the ability to engage m hydrogen bonding via its —OH group Asparagine and glutamine are not amines they are amides The side chains of both O... [Pg.1113]

One ammo acid often serves as the biological precursor to another L Phenylala nine is classified as an essential ammo acid whereas its p hydroxy derivative L tyro sine IS not This is because animals can convert L phenylalanine to L tyrosine by hydrox ylation of the aromatic ring An arene oxide (Section 24 7) is an intermediate... [Pg.1124]

Acyl derivatives, RCO—NH—OH and HjN—O—CO—R, are named as A-hydroxy derivatives of amides and as O-acylhydroxylamines, respectively. The former may also be named as hydroxamic acids. Examples are A-hydroxyacetamide for CH3CO—NH—OH and O-acetylhydrox-ylamine for HjN—O—CO—CH3. Further substituents are denoted by prefixes with O- and/or A-locants. For example, C5H5NH—O—C2H5 would be O-ethyl-A-phenylhydroxylamine or A-ethox-ylaniline. [Pg.32]

I60C-Hydroxy Derivatives of Gorticoids and their Acetonides. The preparation of 16a-hydroxy-9a-fluoroprednisolone (48) from the 3,20-bisethylene ketal of hydrocortisone acetate (49) has been reported (73). The latter was dehydrated with thionyl chloride in pyridine to yield the 4,9(11),16-triene (50). The 16,17-unsaturated linkage was selectively hydroxylated with OsO /pyridine to yield the 16a,17a-diol (51), which was converted... [Pg.100]

For uniformity with the stmctures given in the Colourindex the ammonium radical (9) is used for the amino-substituted xanthenes and the keto form for the hydroxy derivatives. The xanthene dyes may be classified into two main groups diphenylmethane derivatives, called pyronines, and triphenylmethane derivatives (eg, (4)), which are mainly phthaleins made from phthaUc anhydride condensations. A third much smaller group of rosamines (9-phenylxanthenes) is prepared from substituted ben2aldehydes. The phthaleins may be further subdivided into the following fluoresceins (hydroxy-substituted) rhodamines (amino-substituted), eg, (6) and mixed hydroxy/amino-substituted. [Pg.399]

Ana.lytica.1 Rea.gents, The chelating property of quinolines, eg, 8-hydroxy derivatives, make them useful in metal gravimetric appHcations however, few are any longer of practical importance. Amino- and sulfur-substituted quinolines have also been employed in metal analyses (105,106). [Pg.394]

The triaryknethane dyes are broadly classified into the triphenyknethanes (Cl 42000—43875), diphenylnaphthyknethanes (Cl 44000—44100), and miscellaneous triphenylmethane derivatives (Cl 44500—44535). The triphenyknethanes are classified further on the basis of substitution in the aromatic nuclei, as follows (/) diamino derivatives of triphenylmethane, ie, dyes of the malachite green series (Cl 42000—42175) (2) triamino derivatives of triphenylmethane, ie, dyes of the fuchsine, rosaniline, or magenta series (Cl 42500—42800) (J) aminohydroxy derivatives of triphenylmethane (Cl 43500—43570) and (4) hydroxy derivatives of triphenylmethane, ie, dyes of the rosoHc acid series (Cl 43800—43875). Monoaminotriphenyknethanes are known but they are not included in the classification because they have Httie value as dyes. [Pg.267]

The avermectins also possess a number of aUyflc positions that are susceptible to oxidative modification. In particular the 8a-methylene group, which is both aUyflc and alpha to an ether oxygen, is susceptible to radical oxidation. The primary product is the 8a-hydroperoxide, which has been isolated occasionally as an impurity of an avermectin B reaction (such as the catalytic hydrogenation of avermectin B with Wilkinson s rhodium chloride-triphenylphosphine catalyst to obtain ivermectin). An 8a-hydroxy derivative can also be detected occasionally as a metaboUte (42) or as an impurity arising presumably by air oxidation. An 8a-oxo-derivative can be obtained by oxidizing 5-0-protected avermectins with pyridinium dichromate (43). This also can arise by treating the 8a-hydroperoxide with base. [Pg.283]

Deuteration of C-methyl protons in simple methylpyrimidines and their amino and hydroxy derivatives has been studied under acidic and basic conditions. The exchange is acid/base catalyzed with, for example, a minimal rate at pH 4 for 1,4,6-trimethylpyrimidin-2(lH)-imine (67JCS(B)171). [Pg.78]

The UV spectra of pyrido[2,3-d]pyridazine-l,4-diones have been recorded (68MI21501), whilst several of the latter were also used in chemiluminescence studies. Quinolinic and cinchomeronic hydrazides showed no chemiluminescence (60NKK173, 37JPR(148)135), but it was observed in the 8-hydroxy derivative (305) (72YZ703). [Pg.236]

Protonation of pyrido[2,3-f ]pyrazine occurs normally without covalent hydration, although the 2-hydroxy derivative did show such behaviour (63JCS5737). The pyrido[3,4-f)]pyrazine parent base does show the phenomenon, although the exact structure of the covalent hydrate seemed to be in doubt between protonated (392) and (397). The issue was resolved in favour of the former by NMR (79JHC301, 75AG356). The 3-hydroxy derivative also shows hydration effects, as does the 7-amino cation (63JCS5166). [Pg.251]

Few reports of successful 7V-oxide preparation have been found (48JCS1389, 71CR(C)-(273)1529), whilst other papers refer to many failures in attempted A( -oxidations, and the parent [2,3-f ] compound gives the 6-hydroxy derivative instead of an A( -oxide (63JCS5737). [Pg.251]

Nitro groups have been reduced to amino groups, whilst amino groups in the 3- and 6-positions of pyrido[2,3-f ]pyrazines and in the 5-position of the [3,4-f ] isomers have been hydrolyzed to the corresponding hydroxy derivatives with alkali. Protected amino groups have been liberated by hydrolysis or reduction in deazapteridine syntheses. [Pg.253]

This can be achieved by an indirect method. The lithio derivative is first reacted with a borate ester. Sequential acid hydrolysis and oxidation yields the corresponding hydroxy derivative. This procedure is illustrated by the conversion of 2-lithiobenzo[6]thiophene to 2-hydroxybenzo[6]thiophene, which exists predominantly in the 2(3//)-one tautomeric form (200) <70JCS(C)1926). [Pg.80]

Oxidation of thiophene with peracid under carefully controlled conditions gives a mixture of thiophene sulfoxide and 2-hydroxythiophene sulfoxide. These compounds are trapped by addition to benzoquinone to give ultimately naphthoquinone (225) and its 5-hydroxy derivative (226) (76ACS(B)353). The further oxidation of the sulfoxide yields the sulfone, which may function as a diene or dienophile in the Diels-Alder reaction (Scheme 88). An azulene synthesis involves the addition of 6-(A,A-dimethylamino)fulvene (227) to a thiophene sulfone (77TL639, 77JA4199). [Pg.84]

The tautomerism of 2-substituted 1,3-azoles (154 155) is summarized in Table 39. Whereas amino compounds occur Invariably as such, all the potential hydroxy derivatives exist in the 0x0 form, and in this series the sulfur compounds resemble their oxygen analogs. There is a close analogy between the tautomerism for all these derivatives with the corresponding 2-substltuted pyrldines. [Pg.37]

Pyrazoles, isoxazoles and isothiazoles with a hydroxyl group in the 3-position (491 Z = NR, O, S) could isomerize to 3-azolinones (492). However, these compounds behave as true hydroxy derivatives and show phenolic properties. They give an intense violet color with iron(III) chloride and form a salt (493) with sodium hydroxide which can be O-alkylated by alkyl halides (to give 494 R = alkyl) and acylated by acid chlorides (to give 494 R = acyl). [Pg.100]

Hydroxy derivatives of type (503) show more phenolic character thus 4-hydroxy-isothiazoles are normally O-methylated and O-acylated (72AHC(14)l). [Pg.101]

Although isoxazoles are comparatively weak electron donors, complexes with numerous metal ions, notable metal(II) ions, have been reported. The ligands include isoxazole and its methyl, phenyl, amino and hydroxy derivatives. They are listed with references in Table 5. [Pg.20]

Acylation of 3-alkyl-6-hydroxy-l,2-benzisoxazole has also been reported (77JIC875) under Friedel-Crafts conditions to give the 7-acyl product. Fries rearrangement of 6-acetoxy-3-methyl-1,2-benzisoxazole in the presence of AICI3 at 140 °C also provides a route to the 7-acetyl-6-hydroxy derivatives (73UC541). Reactions of these kind are rare in this series. [Pg.48]

SnCl2 reduction produced the 4-hydrazinoisoxazole (243). In ethanol the diazonium salt reacted with the 4-aminoisoxazole to produce the linear triazine (244) (Scheme 85). Diazoisoxazoles can also be treated with KI or H20/urea to produce the 4-iodo or 4-hydroxy derivatives (63AHC(2)365). These Sandmeyer reactions have been extended to a variety of isoxazole systems (77JMC934, 63AHC(2)365). [Pg.55]


See other pages where Hydroxy derivatives is mentioned: [Pg.350]    [Pg.407]    [Pg.218]    [Pg.273]    [Pg.793]    [Pg.97]    [Pg.210]    [Pg.40]    [Pg.95]    [Pg.460]    [Pg.109]    [Pg.148]    [Pg.400]    [Pg.92]    [Pg.134]    [Pg.215]    [Pg.258]    [Pg.36]    [Pg.150]    [Pg.41]    [Pg.101]    [Pg.219]    [Pg.159]    [Pg.679]    [Pg.807]   
See also in sourсe #XX -- [ Pg.454 ]




SEARCH



3- Hydroxy-2-thiophenecarboxylic acid derivatives

4-Hydroxy-2,2,6,6-tetramethylpiperidine, derivatives

7a-hydroxy derivatives

Acetals Derived from Carbohydrate Hydroxy-groups

Amino hydroxy carboxylic acid, derivative synthesis,

Anthraquinone, hydroxy derivatives

Azines 2-hydroxy derivatives

Cinnamic acid, hydroxy derivatives trans

Hydroxy acids and Derivatives

Hydroxy acids, trimethylsilyl derivatives

Hydroxy and Mercapto Derivatives

Hydroxy cinnamic acid derivatives

Hydroxy derivatives with three heteroatoms

Hydroxy-, derivatives 712 Subject

Hydroxy-, derivatives ionization potentials

Hydroxy-, derivatives ketones, properties

Hydroxy-, derivatives lithiation

Hydroxy-, derivatives mass spectrometry

Hydroxy-, derivatives mercapto-, tautomerism

Hydroxy-, derivatives metallated

Hydroxy-, derivatives molecular geometry

Hydroxy-, derivatives quaternization

Hydroxy-, derivatives reaction with Lewis acids

Hydroxy-, derivatives reactions

Hydroxy-, derivatives solubility

Hydroxy-, derivatives sulfur-containing, oxidation

Hydroxy-, derivatives tautomerism

Hydroxy-, derivatives thiones, oxidation

Hydroxy-, derivatives with organometallics

Hydroxy-, derivatives with peracids

Hydroxy-5-Methylisoxazole Derivatives

Isoflavone, hydroxy derivatives

LOX-Derived Mono Hydroxy Fatty Acids

O-Hydroxy aldehydes, metal derivatives

O-Hydroxy aldehydes, metal derivatives of aromatic

O-Hydroxy phenones, metal derivatives

Organogermanes with Hydroxy Groups and Their Derivatives

Organotin Compounds with Hydroxy Groups and Derivatives

P-hydroxy-a-amino acid derivatives

Triazine hydroxy derivatives

© 2024 chempedia.info