Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin immunity

Vitamin E [59-02-9] C2c,H q02, has been studied for its potential to modulate prostaglandin metaboHsm and alter immune response in aged mice. [Pg.427]

In the treatment of diseases where the metaboUtes are not being deUvered to the system, synthetic metaboUtes or active analogues have been successfully adrninistered. Vitamin metaboUtes have been successfully used for treatment of milk fever ia catde, turkey leg weakness, plaque psoriasis, and osteoporosis and renal osteodystrophy ia humans. Many of these clinical studies are outlined ia References 6, 16, 40, 51, and 141. The vitamin D receptor complex is a member of the gene superfamily of transcriptional activators, and 1,25 dihydroxy vitamin D is thus supportive of selective cell differentiation. In addition to mineral homeostasis mediated ia the iatestiae, kidney, and bone, the metaboUte acts on the immune system, P-ceUs of the pancreas (iasulin secretion), cerebellum, and hypothalamus. [Pg.139]

Vitamin D metaboUtes may therefore play an active role ia diseases related to these functions, ie, leukemia, cancer (breast, colon, prostate), and autoimmune diseases (AIDS, immune encephaUtis, and diabetes) (51, 141,193—197, 202, 203). [Pg.139]

The recommended daily allowance for vitamin E ranges from 10 international units (1 lU = 1 mg all-rac-prevent vitamin E deficiency in humans. High levels enhance immune responses in both animals and humans. Requirements for animals vary from 3 USP units /kg diet for hamsters to 70 lU /kg diet for cats (13). The complete metaboHsm of vitamin E in animals or humans is not known. The primary excreted breakdown products of a-tocopherol in the body are gluconurides of tocopheronic acid (27) (Eig. 6). These are derived from the primary metaboUte a-tocopheryl quinone (9) (see Eig. 2) (44,45). [Pg.147]

Vitamin B6-coenzyme is involved in a variety of reactions, e.g., in the immune system, gluconeogenesis, erythrocyte fimction, niacin formation, nervous system, lipid metabolism, and in hormone modulation/gene expression [1, 2]. [Pg.1290]

Vitamin C status is supposed to play a role in immune function and to influence the progression of some chronic degenerative diseases like atherosclerosis, cancer, cataracts, and osteoporosis. The role of vitamin C in immune function, especially during common cold and upper respiratory tract infection, is the subject of lively debate. The exact mechanisms of action have not yet been fully elucidated, but the results of several trials point to a reduced duration and intensity of infections in subjects consuming high amounts of vitamin C (200-1000 mg/d). However, the incidence of common cold was not influenced significantly (24). [Pg.1294]

Globally, undernutrition is widespread, leading to impaired growth, defective immune systems, and reduced work capacity. By contrast, in developed countries, there is often excessive food consumption (especially of fat), leading to obesity and to the development of cardiovascular disease and some forms of cancer. Deficiencies of vitamin A, iron, and iodine pose major health concerns in many countries, and deficiencies of other vitamins and minerals are a major cause of iU health. In developed countries, nutrient deficiency is rare, though there are vulnerable sections of the population at risk. Intakes of minerals and vitamins that are adequate to prevent deficiency may be inadequate to promote optimum health and longevity. [Pg.474]

The consumables represent the essential food or nutritional reqirirements. Conventionally they include sugars, starches, proteins, vitamins, trace elements, oxygen, carbon dioxide and nitrogen but bacteria are probably the most omnivorous of all living organisms and to the above list may be added plastic, mbber, kerosene, naphthalene, phenol and cement. One is left feeling that there is no substance which is immune to microbial... [Pg.15]

Rice bran is the richest natural source of B-complex vitamins. Considerable amounts of thiamin (Bl), riboflavin (B2), niacin (B3), pantothenic acid (B5) and pyridoxin (B6) are available in rice bran (Table 17.1). Thiamin (Bl) is central to carbohydrate metabolism and kreb s cycle function. Niacin (B3) also plays a key role in carbohydrate metabolism for the synthesis of GTF (Glucose Tolerance Factor). As a pre-cursor to NAD (nicotinamide adenine dinucleotide-oxidized form), it is an important metabolite concerned with intracellular energy production. It prevents the depletion of NAD in the pancreatic beta cells. It also promotes healthy cholesterol levels not only by decreasing LDL-C but also by improving HDL-C. It is the safest nutritional approach to normalizing cholesterol levels. Pyridoxine (B6) helps to regulate blood glucose levels, prevents peripheral neuropathy in diabetics and improves the immune function. [Pg.357]

The above scientific information on rice bran phytochemicals indicates that a multitude of mechanisms are operating at the cellular level to bring about specific health effects. Several health benefits of rice bran appear to be the result of the synergistic function of the many phytochemicals, antioxidants, vitamins and minerals which operates through a specific immune response. Their role in the biochemical mechanisms at the cellular level which result in major health effects is shown in Fig. 17.1. A short overview summarizing the effect of the various phytochemicals on major health issues such as cancer, immune function, cardiovascular disease, diabetes, altered liver function and gastrointestinal and colon disease will be given below. [Pg.363]

In the Unites States, the daily intake of 3-carotene is around 2 mg/day Several epidemiological studies have reported that consumption of carotenoid-rich foods is associated with reduced risks of certain chronic diseases such as cancers, cardiovascular disease, and age-related macular degeneration. These preventive effects of carotenoids may be related to their major function as vitamin A precursors and/or their actions as antioxidants, modulators of the immune response, and inducers of gap-junction communications. Not all carotenoids exert similar protective effects against specific diseases. By reason of the potential use of carotenoids as natural food colorants and/or for their health-promoting effects, research has focused on better understanding how they are absorbed by and metabolized in the human body. [Pg.161]

Health benefits — Research reports indicate that natural (3-carotene possesses numerous benefits for the human body and consistently supports the use of (3-carotene as part of the human diet. The human body converts (3-carotene to vitamin A via body tissues as opposed to the liver, hence avoiding a build-up of toxins in the liver. Vitamin A is essential for the human body in that it assists the immune system and helps battle eye diseases such as cataracts and night blindness, various skin ailments such as acne, signs of aging, and various forms of cancer. [Pg.404]

Routine antioxidant vitamin supplementation, e.g. with vitamins C and/or E, of the diabetic diet should be considered. Vitamin C depletion is present in all diabetics irrespective of the presence of vascular disease. A recent study demonstrated no significant difference between the dietary intake of vitamin C (the main determinant of plasma ascorbate) in patients with diabetes and age-matched controls, confirming the view that ascorbate depletion is secondary to the diabetic process and su esting that diabetic patients require additional intakes of the vitamin to maintain optimal levels (Sinclair et /., 1994). Antioxidant supplementation may have additive beneficial effects on a wide variety of processes involved in diabetic vascular damage including blood pressure, immune function, inflammatory reactions. [Pg.194]

Whey proteins are known to increase immune response and maintain muscle mass (Phillips et ah, 2009). In one instance, when an immunosti-mulatory vitamin and mineral mixture developed at Tufts University Human Nutrition Research Center on Aging was blended with texturized WPI (TWPI) in an extruded snack bar, immunostimulatory effects were enhanced in young (< 5 months) and old (> 22 months) mice fed ad libitum for 5 weeks. The mineral mixture and TWPI improved T cell proliferation and reduced upregulated production of proinflammatory mediators in... [Pg.176]

Topical therapy is the initial drug treatment strategy for patients with mild to moderate psoriasis. It is estimated that approximately 70% to 80% of all patients with psoriasis can he treated adequately with use of topical therapy.1 Topical therapies include corticosteroids, coal tar products, anthralin, vitamin D3 analogues such as calcipotriol, retinoids such as tazarotene, and topical immunomodulators such as tacrolimus and pime-crolimus.18 Vitamin D3 analogues and topical retinoids all affect keratinocyte functions and the immune response. Currently, these are in wider use than is either anthralin or coal tar preparations. [Pg.953]

A decrease in erythrocyte production can be multifactorial. A deficiency in nutrients (such as iron, vitamin B12, and folic acid) is a common cause that often is easily treatable. In addition, patients with cancer and CKD are at risk for developing a hypoproductive anemia. Furthermore, patients with chronic immune-related diseases (such as rheumatoid arthritis and systemic lupus erythematosus) can develop anemia as a complication of their disease. Anemia related to these chronic inflammatory conditions is typically termed anemia of chronic disease. [Pg.976]

Vitamin A deficiency affects more than 100 million children around the world (Miller and others 2002) and thus remains an important public health problem in many countries. Vitamin A is essential for vision, reproduction, growth, immune function, and general health of humans (van Lieshout and others 2001). The major sources of vitamin A in the human diet are retinyl esters (preformed vitamin A) found in foods of animal origin and provitamin A carotenoids from fruits and vegetables. Unfortunately, foods containing preformed vitamin A (meat, milk, eggs, etc.) are frequently too expensive for some economically deprived developing countries, and therefore dietary carotenoids are the main source of vitamin A in these countries. [Pg.208]

Sklan D, Yosefov T and Friedman A. 1989. The effects of vitamin A, betacarotene and canthaxanthin on vitamin A metabolism and immune responses in the chick. Int J Vitam Nutr Res 59 245-250. [Pg.220]

The balance between excess and insufficient zinc is important. Zinc deficiency occurs in many species of plants and animals, with severe adverse effects on all stages of growth, development, reproduction, and survival. In humans, zinc deficiency is associated with delayed sexual maturation in adolescent males poor growth in children impaired growth of hair, skin, and bones disrupted Vitamin A metabolism and abnormal taste acuity, hormone metabolism, and immune function. Severe zinc deficiency effects in mammals are usually prevented by diets containing >30 mg Zn/kg DW ration. Zinc deficiency effects are reported in aquatic organisms at nominal concentrations between 0.65 and 6.5 pg Zn/L of medium, and in piscine diets at <15 mg Zn/kg FW ration. Avian diets should contain >25 mg Zn/kg DW ration for prevention of zinc deficiency effects, and <178 mg Zn/kg DW for prevention of marginal sublethal effects. [Pg.725]

The receptor for RANKL is RANK, also known as ODAR (Anderson et al. 1997 Hsu et al. 1999). RANK is expressed in osteoclast precursors, mature osteoclasts, condrocytes, fibroblasts, and immune system cells (Anderson et al. 1997 Hsu et al. 1999). The binding of RANKL with RANK on preosteoclasts initiates the OCS and the activation of osteoclasts (Anderson et al. 1997 Hsu et al. 1999 Nakagawa et al. 1998). RANK-deficient mice display a phenotype characterized by osteopetrosis and several defects in the immune system similar to that observed in RANKL-deficient mice (Dougall et al. 1999). Consistent with this hypothesis, RANK-deficient mice are resistant to bone resorption induced by TNF-a, IL-l/J, or vitamin D3 (Li et al. 2000). In agreement with this, mice deficient in molecules implied in the transduction pathway from RANK like TRAF-6 or NF-/c Bl/NK-/c B2 also show an osteopetrotic phenotype,... [Pg.177]

Furthermore, mice treated with anti-oxidants (Vitamins C, or E, or beta-hydroxy toluene) prior to JP-8 dermal application exhibit a partial recovery in immune function... [Pg.229]


See other pages where Vitamin immunity is mentioned: [Pg.427]    [Pg.432]    [Pg.491]    [Pg.68]    [Pg.103]    [Pg.136]    [Pg.1295]    [Pg.13]    [Pg.483]    [Pg.20]    [Pg.34]    [Pg.353]    [Pg.358]    [Pg.368]    [Pg.408]    [Pg.253]    [Pg.1519]    [Pg.369]    [Pg.407]    [Pg.318]    [Pg.327]    [Pg.15]    [Pg.303]    [Pg.155]    [Pg.209]    [Pg.676]    [Pg.179]    [Pg.191]    [Pg.192]    [Pg.200]   
See also in sourсe #XX -- [ Pg.444 ]




SEARCH



Humoral immunity vitamin

Immune function antioxidant vitamin supplementation effects

Immune system vitamin intake

Immune system vitamins role

Immune system, vitamin

Vitamin D (cont immune system

Vitamin cellular immunity

Vitamins immune function

© 2024 chempedia.info