Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Use as surfactant

Block copolymers are closer to blends of homopolymers in properties, but without the latter s tendency to undergo phase separation. As a matter of fact, diblock copolymers can be used as surfactants to bind immiscible homopolymer blends together and thus improve their mechanical properties. Block copolymers are generally prepared by sequential addition of monomers to living polymers, rather than by depending on the improbable rjr2 > 1 criterion in monomers. [Pg.434]

Industrial Applications. Perfluoroacylbenzene sulfonates, used as additives in fire-extinguishing compounds and galvanizing baths have been prepared (88). Perfluoroacylbenzenesulfonate salts prepared by Friedel-Crafts reaction of perfluoroacyl haUdes and benzene, and subsequent sulfonation have been used as surfactants (89). [Pg.557]

Alkanolamides, a special subclass of substituted amides used as surfactants, are produced by three principal methods the reaction of fatty amides with formaldehyde, fatty acids with hydroxyalkylamines, and fatty esters with hydroxyalkylamines (37). A fatty amide and formalin can be heated in the presence of sodium hydroxide to yield 70—95% substituted alkanolamides (38,39). [Pg.184]

Castor Wax. Castor wax [8001-78-3] is catalyticahy hydrogenated castor bean oil. The wax has a melting point of 86°C, acid number of 2, saponification number of 179, and an iodine number of 4. Castor wax is used primarily in the formulation of cosmetics. Derivatives of castor wax are used as surfactants and plastics additives. [Pg.315]

Block copolymers have become increasingly important in recent decades. This importance is due to the fact that their special chemical structure yields unusual physical properties, especially as far as solid-state properties are concerned. Block copolymers are applied in various fields, they are used as surfactants, adhesives, fibres, thermoplastics, and thermoplastic elastomers. [Pg.735]

Primary alcohol sulfates are half esters of sulfuric acid. These substances are relatively simple organic molecules and have been known for a long time. The first alcohol sulfate was prepared by Dumas in 1836 [1] but long-chain alcohol sulfates were not used as surfactants until the 1930s [2]. [Pg.224]

Monoester salts of phosphoric acid derived from fatty alcohol ethylene oxide adduct or alkylphenol ethylene oxide adduct useful as surfactants are prepared by addition of R(OCH2CH2) OH, alkali fluoride and (C12P0)20 in a molar ratio of 0.9-1.5 0.05-1 1.0 at -50 to + 10°C and hydrolysis of the Cl-containing intermediates with a base. The monoester phosphates showed comparable or better washing and foaming efficiency than commercial products [12]. [Pg.562]

Amine salts of acrylate ester polymers, which are physiologically acceptable and useful as surfactants, are prepared by transesterifying alkyl acrylate polymers with 4-morpholinethanol or alkanolamines and fatty alcohols or alkoxyl-ated alkylphenols and neutralizing with phosphoric acid. This polymer salt (pH of a 10% aqueous solution = 5.1) was used as an emulsifying agent for oils and waxes [70]. [Pg.565]

Though esters of phosphorous acid have found only limited use as surfactants, they are of interest as intermediates [72], Mainly nonionic surfactants were... [Pg.566]

In regenerating agents for waste oils from washing of mechanical parts, based on sodium silicate and water, salts of alkylphosphates are used as surfactants on account of their good solubility [232]. [Pg.602]

Aqueous, removable, pressure-sensitive adhesive compositions, useful for high-performance applications, comprise a mixture of a copolymer of alkyl (meth)acrylate and N-substituted (poly)amide of (meth)acrylic acid and a copolymer of alkyl (meth)acrylate and ethylenically unsaturated carboxylic acid, where at least one of the copolymers is an emulsion copolymer. Polyoxyalkyl-enes and phosphate esters may be used as surfactants [234]. [Pg.603]

Manufacture of highly water-absorbent polymers with uniform particle size and good flowability can be carried out by reverse phase suspension polymerization of (meth)acrylic acid monomers in a hydrocarbon solvent containing crosslinker and radical initiator. Phosphoric acid monoester or diester of alka-nole or ethoxylated alkanole is used as surfactant. A polymer with water-absorbent capacity of 78 g/g polymer can be obtained [240]. [Pg.605]

The development of monoalkyl phosphate as a low skin irritating anionic surfactant is accented in a review with 30 references on monoalkyl phosphate salts, including surface-active properties, cutaneous effects, and applications to paste and liquid-type skin cleansers, and also phosphorylation reactions from the viewpoint of industrial production [26]. Amine salts of acrylate ester polymers, which are physiologically acceptable and useful as surfactants, are prepared by transesterification of alkyl acrylate polymers with 4-morpholinethanol or the alkanolamines and fatty alcohols or alkoxylated alkylphenols, and neutralizing with carboxylic or phosphoric acid. The polymer salt was used as an emulsifying agent for oils and waxes [70]. Preparation of pharmaceutical liposomes with surfactants derived from phosphoric acid is described in [279]. Lipid bilayer vesicles comprise an anionic or zwitterionic surfactant which when dispersed in H20 at a temperature above the phase transition temperature is in a micellar phase and a second lipid which is a single-chain fatty acid, fatty acid ester, or fatty alcohol which is in an emulsion phase, and cholesterol or a derivative. [Pg.611]

Sulphonic acids are water soluble, viscous liquids. Their acidity is akin to that of sulphuric acid feey form salts with bases but fail to undergo esterification with alcohols. Their properties vary according to the nature of R some are prone to thermal decomposition. They are used as surfactants and in the dye industry some have biological uses. 2-Amino-ethanesulphonic acid is the only naturally occurring sulphonic acid. [Pg.39]

Because the reaction of an amine with an acyl chloride is much faster than the hydrolysis of the acyl chloride, the reaction can usually be carried out in an aqueous alkali solution. This is well known as the Schotten-Baumann procedure.6 For example, a number of N-acyl taxol analogs have been prepared under Schotten-Baumann conditions by the reaction of A-debenzoyltaxol with various acid chlorides (Eq. 9.4).7 Highly purified /V-long-chain-acyl neutral amino acids such as potassium AMauroyTy-aminobutyrate, useful as surfactants for detergent... [Pg.300]

Carboxylates (9.4, where R is the long-chain hydrophobe and X the cation) represent the oldest type of surfactants, since they could be obtained from naturally occurring fats and oils long before the advent of the petrochemical industry sodium heptadecanoate (9.5), for example, incorporates the cetyl group as hydrophobe. Sodium stearate, sodium palmitate and sodium oleate are the simplest carboxylates generally used as surfactants. Alkylaryl compounds (9.6) are also known. [Pg.17]

HTAC and HTAH have been used as surfactants in the chemiluminescence reaction of lucigenin (10,10 -dimethyl-9,9 -biacridinium dinitrate) with biological reductants (such as fructose, glucose, ascorbic and uric acid) or hydrogen peroxide [38],... [Pg.297]

The sulfoxidation of aliphatic hydrocarbons is the easiest method for the synthesis of alkylsulfonic acids. Their sodium salts are widely used as surfactive reactants in technology and housekeeping. Platz and Schimmelschmidt [1] were the first to invent this synthetic method. Normal paraffins (Ci4-Cig) are used for the industrial production of alkylsulfonic acids [2-4]. Olefins and alkylaromatic hydrocarbons do not produce sulfonic acids under the action of sulfur dioxide and dioxygen and retard the sulfoxidation of alkanes [5-9],... [Pg.442]

The unique surface characteristics of polysiloxanes mean that they are extensively used as surfactants. Silicone surfactants have been thoroughly studied and described in numerous articles. For an extensive, in-depth discussion of this subject, a recent chapter by Hill,476 and his introductory chapter in the monograph he later edited,477 are excellent references. In the latter monograph, many aspects of silicone surfactants are described in 12 chapters. In the introduction, Hill discusses the chemistry of silicone surfactants, surface activity, aggregation behavior of silicone surfactants in various media, and their key applications in polyurethane foam manufacture, in textile and fiber industry, in personal care, and in paint and coating industries. All this information (with 200 cited references) provides a broad background for the discussion of more specific issues covered in other chapters. Thus, surfactants based on silicone polyether co-polymers are surveyed.478 Novel siloxane surfactant structures,479 surface activity and aggregation phenomena,480 silicone surfactants application in the formation of polyurethane foam,481 foam control and... [Pg.678]

Nonylphenol ethoxylates (NPEOs) are extensively used as surfactants in industrial products (see Chap. 1). NPEOs are a mixture of polyethoxylated mono-alkylphenols, predominantly para-substituted, and are used in the manufacturing of paints, detergents, inks, and pesticides [435, 446]. Surfactants are common water pollutants because of their use in aqueous solutions, which are discharged into the environment in the form of wastewater from treatment plants or sludge stored in landfills. Degradation products of alkylphenol polyethoxylates, i. e., nonylphenol (NP), have the potential to be bioaccumulated, thereby becoming toxic to aquatic [447] and soil microorganisms [435,448]. [Pg.396]

One advantage of using a cleavable acetal surfactant instead of a conventional amphiphile has been elegantly demonstrated in a work by Bieniecki and WUk [51]. A cationic 1,3-dioxolane derivative was used as surfactant in a microemulsion formulation that was employed as a reaction medium for an organic synthesis. When the reaction was complete, the surfactant was decomposed by addition of acid and the reaction product easily recovered from the resulting two phase system. Through this procedure the problems of foaming and emulsion formation, frequently encountered with conventional surfactants, could be avoided. [Pg.77]

From Ionic Liquid Stability to Biodegradability 151 Table 6.2 Ammonium ionic liquids previously used as surfactants. [Pg.151]

The synthesis of various multi-arm star polymers has long been of growing practical and theoretical interest to a variety of industries. Star polymers have shown to be useful as surfactants, lubricants, rheology modifiers, and viscosity modifiers. Actually, star polymers are considered as viscosity modifiers and oil additives (15). [Pg.155]


See other pages where Use as surfactant is mentioned: [Pg.22]    [Pg.114]    [Pg.450]    [Pg.373]    [Pg.348]    [Pg.134]    [Pg.255]    [Pg.559]    [Pg.578]    [Pg.607]    [Pg.611]    [Pg.643]    [Pg.72]    [Pg.3]    [Pg.164]    [Pg.256]    [Pg.123]    [Pg.88]    [Pg.89]    [Pg.112]    [Pg.215]    [Pg.159]    [Pg.214]    [Pg.80]    [Pg.597]    [Pg.255]   
See also in sourсe #XX -- [ Pg.671 ]




SEARCH



Enzymatic Synthesis of Polar Lipids Useful as Surfactants

Surfactant use

© 2024 chempedia.info