Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Urea, estimation

In the particular example shown, zinc sulfate and barium hydroxide are being dispensed into the test tube so as to precipitate the proteins. The filtrate obtained is the filtrate from 10 microliters of serum. This can be used for several purposes and in the application being referred to, an amount equivalent to 3 microliters is being used for sugar determination, by the hexokinase procedure and an amount equivalent to 3 microliters is being used for urea estimation with diacetylmonoxime (15). [Pg.105]

More recently, a modified version of this same mechanism has been suggested based on the structural and kinetics results on the K. aerogenes enzyme.The key features of this proposal are the interaction of urea with both nickel ions and the presence of a reverse protonation scheme. In this scheme, a protonated His320 acts as a general acid, while the less acidic water coordinated to Ni2 is deprotonated and acts as the nucleophile that attacks the urea coordinated to Nil. Thus, it is proposed that the active form of the enzyme consists of the one molecule in approximately 10 that contains both a deprotonated water ligand (estimated pK x 9.0) and a protonated His320 (estimated s 6.5). Such a reverse protonation scheme results in both a stronger acid and a more potent nucleophile, which in this model accounts for the ability of urease to overcome the lack of basicity of urea (estimated pK x —2) and its inertness to nucleophilic attack. Thus, if this model is correct, the actual value for urease is approximately 10 rather than 10 , i.e.,... [Pg.646]

Blood for urea estimation may be preserved from coagulation by addition of oxalate or citrate. Fluoride must not be used as it has an inhibiting action on the urease. [Pg.452]

This snbchapter presents the resnlts of a study on the absorption kinetics of a number of liquids for segmented polyether nrethane urea. Estimation of the diffusion coefficient of liquids was made for crosshnked polymers with a spatial network where crosslinking points are caused by chemical bonds and hard segment domains. [Pg.342]

The analyses which follow are arranged in the order in which they would be applied to a newly discovered substance, the estimation of the elements present and molecular weight deter-minations(f.e., determination of empirical and molecular formulae respectively) coming first, then the estimation of particular groups in the molecule, and finally the estimation of special classes of organic compounds. It should be noted, however, that this systematic order differs considerably from the order of experimental difficulty of the individual analyses. Consequently many of the later macro-analyses, such as the estimation of hydroxyl groups, acetyl groups, urea, etc. may well be undertaken by elementary students, while the earlier analyses, such as estimation of elements present in the molecule, should be reserved for more senior students. [Pg.416]

Method, There are two standard methods for the estimation of urea, (i) the hypobromite method, (ii) the urease method (p. 519). The chief merit of the hypobromite method is the rapidity of the analysis the results obtained are considered sufficiently accurate for most medical requirements, e.g., for the estimation of urea in urine. For accurate metabolic work, however, the urease method should be employed. [Pg.458]

The chief sources of this important enzyme are (a) the jack bean (Canavalia ensiformis). (b) the soy (or soja) bean (Glycine hispida). The enzyme is of great value in identifying and estimating urea. The action of urease on urea is specific, the reaction catalysed being ... [Pg.519]

PRACTICAL ORGANIC CHEMISTRY ESTIMATION OF UREA BY UREASE. [Pg.520]

This method of estimating urea is more accurate than the hypobromitc method (p. 458) and is used extensively for accurate metabolic work. [Pg.520]

The method is based on the conversion of urea to amnionium carbonate and the estimation of the latter by titration with standard acid. For this purpose, two equal quantities of urea (or urine) are measured out into two flasks A and B. A is treated with 10 ml. of a strong urease preparation and some phenol-phthalein, warm water is added and the mixture is adjusted by the addition of V/io HCl from a burette A until the red colour is just discharged. This brings the mixture to about pH 8 (the optimum for urease) and also prevents loss of ammonia. [Pg.520]

The estimation. Label two 250 ml. conical flasks A and B, and into each measure 5 ml. of urine solution (or about o i g. of solid urea, accurately weighed). Add to each about 20 ml. of water and bring the temperature to about 60°. To A add 3 drops of phenolphthalein solution and to B add i ml. of 0-5% mercuric chloride solution. Now to each solution, add 10 ml. of the urease solution and mix well. The mixture A soon turns red. [Pg.520]

Uses. Furfuryl alcohol is widely used as a monomer in manufacturing furfuryl alcohol resins, and as a reactive solvent in a variety of synthetic resins and appHcations. Resins derived from furfuryl alcohol are the most important appHcation for furfuryl alcohol in both utihty and volume. The final cross-linked products display outstanding chemical, thermal, and mechanical properties. They are also heat-stable and remarkably resistant to acids, alkaUes, and solvents. Many commercial resins of various compositions and properties have been prepared by polymerization of furfuryl alcohol and other co-reactants such as furfural, formaldehyde, glyoxal, resorcinol, phenoHc compounds and urea. In 1992, domestic furfuryl alcohol consumption was estimated at 47 million pounds (38). [Pg.80]

Urea and uracil herbicides tend to be persistent in soils and may carry over from one season to the next (299). However, there is significant variation between compounds. Bromacil is debrominated under anaerobic conditions but does not undergo further transformation (423), linuron is degraded in a field soil and does not accumulate or cause carryover problems (424), and terbacd [5902-51-2] is slowly degraded in a Russian soil by microbial means (425). The half-hves for this breakdown range from 76 to 2,475 days and are affected by several factors including moisture and temperature. Finally, tebuthiuron apphed to rangeland has been shown to be phytotoxic after 615 days, and the estimated time for total dissipation of the herbicide is from 2.9 to 7.2 years (426). [Pg.54]

The estimated world production capacity for hydrazine solutions is 44,100 t on a N2H4 basis (Table 6). About 60% is made by the hypochlorite—ketazine process, 25% by the peroxide—ketazine route, and the remainder by the Raschig and urea processes. In addition there is anhydrous hydrazine capacity for propellant appHcations. In the United States, one plant dedicated to fuels production (Olin Corp., Raschig process), has a nominal capacity of 3200 t. This facihty also produces the two other hydrazine fuels, monomethyUiydrazine and unsymmetrical dimethyUiydrazine. Other hydrazine fuels capacity includes AH in the PRC, Japan, and Russia MMH in France and Japan and UDMH in France, Russia, and the PRC. [Pg.285]

Currently, there is continuing work on an iadustry standard method for the direct determination of monomer, dimer, and trimer acids. Urea adduction (of the methyl esters) has been suggested as a means of determining monomer ia distilled dimer (74). The method is tedious and the nonadductiag branched-chain monomer is recovered with the polymeric fraction. A micro sublimation procedure was developed as an improvement on urea adduction for estimation of the polymer fraction. Incomplete removal of monomer esters or loss of dimer duriag distillation can lead to error (75). [Pg.116]

By the mid-1990s world production of aminoplastics was estimated at about 6 000 000 t.p.a. of which more than 5 000 000 t.p.a. were urea-formaldehyde resins. The bulk of the rest were melamine-formaldehyde. Such bald statistics, however, disguise the fact that a considerable amount of aminoplastics used are actually co-condensates of urea, melamine and formaldehyde. [Pg.669]

Uses. Since 1947, 70 to 85% of the annual USA production of nitric acid has gone into the production of NH4 nitrate fertilizer, initially in the form of solid prills currently, increasing amounts have been supplied mixed with excess ammonia and/or urea as aqueous nitrogen solution for direct application to the soil. Some 15% is used in explsj (nitrates nitro compds), and about 10% is consumed by the chemical industry. As the red fuming acid or as nitrogen tetroxide, nitric acid is used extensively as the oxidizer in proplnts for rocketry. It is estimated that current USA capacity for nitric acid is in excess of 10 million tons (Refs 30, 34, 36 37)... [Pg.273]

Nitrogen isotope ratios ( N/ " N) inerease from plants to herbivores to eami-vores and ean be used to estimate the degree of camivory in human diets. Some field studies observe a greater differenee in 5 N between trophie levels in dry, hot habitats than in wet, cool ones. Two hypotheses have been proposed to explain this variation in difference in 8 N between trophic levels. (1) Elevated excretion of -depleted urea in heat/water-stressed animals (2) recycling of nitrogen on protein-deficient diets. Both predict increased diet-tissue 8 N difference under stress. [Pg.243]

The activity of enzymes in the film was estimated in the following way In order to test the activity of urease, we utilized a calorimetric assay based on urea hydrolysis the enzymatic reaction was followed at 590 nm, the suitable wavelength for bromcresol purple (Chandler 1982). Urea concentration was 1.67 ts 10 M. [Pg.158]

Natelson, S. A rapid method for the estimation of urea in biological fluids as the urea diacetyl complex. [Pg.150]


See other pages where Urea, estimation is mentioned: [Pg.70]    [Pg.199]    [Pg.770]    [Pg.70]    [Pg.268]    [Pg.70]    [Pg.199]    [Pg.770]    [Pg.70]    [Pg.268]    [Pg.124]    [Pg.458]    [Pg.459]    [Pg.310]    [Pg.219]    [Pg.238]    [Pg.38]    [Pg.45]    [Pg.37]    [Pg.37]    [Pg.19]    [Pg.212]    [Pg.328]    [Pg.237]    [Pg.14]    [Pg.479]    [Pg.271]    [Pg.96]    [Pg.401]   
See also in sourсe #XX -- [ Pg.458 , Pg.520 ]




SEARCH



Urea, estimation (hypobromite

Urea, estimation test

© 2024 chempedia.info