Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Urea adduction

Urea (CAS no. (57-13-6), CO(NH2)2, white crystalline substance m.p. 132.7°C), one of the highest volume bulk chemicals in the chemical industry has been commonly used to form an adduct with meta-cresol. The adduct urea-meta-cresol is in solid form and is easily separated by filtration or centrifuging. The added is usually dissolved in hot water (70-80°C) and separated from meto-cresol. The other component p-cresol remains in the mother liquor and both relatively pure grades of meta- and para-cresols are obtained [15]. [Pg.53]

Urea/formaldehyde adduct Urea/fomialdehyde condensate Urea/for-... [Pg.1409]

Synonyms Eormaldehyde copolymer with urea Eormaldehyde/urea condensate Eormaldehyde/urea copolymer Eormaldehyde/urea polymer Eormaldehyde/urea precondensate Eormaldehyde/urea prepolymer Eormaldehyde/urea resin Formalin/urea copolymer Methylolurea resin Paraformaldehyde/urea polymer Paraformaldehyde/urea resin Polynoxylin Polyoxymethylene urea (INCI) UF Ure ormaldehyde adduct Urea/formaldehyde condensate Urea/formaldehyde copolymer Urea/formaldehyde oligomer Urea/formaldehyde polymer Urea/ formaldehyde precondensate Urea/formaldehyde prepolymer Urea, polymer with formaldehyde Classification Amino resin thermosetting resin Definition Thermosetting resin formed from condensation reaction of formaldehyde with urea formu/a (CH,N20 CH2O),... [Pg.1409]

Characteristics of Mass Spectra The resulting mass spectra generally showed the (de)protonated molecule or (de)sodiated signals (Table 49.4) however, anunonium adducts, urea adducts, or loss in water, and... [Pg.1197]

Urea has the remarkable property of forming crystalline complexes or adducts with straight-chain organic compounds. These crystalline complexes consist of a hoUow channel, formed by the crystallized urea molecules, in which the hydrocarbon is completely occluded. Such compounds are known as clathrates. The type of hydrocarbon occluded, on the basis of its chain length, is determined by the temperature at which the clathrate is formed. This property of urea clathrates is widely used in the petroleum-refining industry for the production of jet aviation fuels (see Aviation and other gas-TURBINE fuels) and for dewaxing of lubricant oils (see also Petroleum, refinery processes). The clathrates are broken down by simply dissolving urea in water or in alcohol. [Pg.310]

The history of iaclusion compounds (1,2) dates back to 1823 when Michael Faraday reported the preparation of the clathrate hydrate of chlorine. Other early observations iaclude the preparation of graphite iatercalates ia 1841, the P-hydroquiaone H2S clathrate ia 1849, the choleic acids ia 1885, the cyclodexthn iaclusion compounds ia 1891, and the Hofmann s clathrate ia 1897. Later milestones of the development of iaclusion compounds refer to the tri-(9-thymotide benzene iaclusion compound ia 1914, pheaol clathrates ia 1935, and urea adducts ia 1940. [Pg.61]

Tertiary amines have been shown to react with isocyanates ia an analogous fashion to form ureas (41—43). Similarly, a2iridines (three-membered rings containing nitrogen) are found to react with isocyanates to yield cycHc ureas. Tertiary amines have also been shown to form labile dipolar 1 1 adducts with isocyanates reminiscent of salt formation. In contrast, formaldehyde acetal aminals form iasertion products with sulfonyl isocyanates (44,45). [Pg.449]

Urea forms a 1 1 adduct with hydrogen peroxide. Urea peroxohydrate [124-43-6] CO(NH2)2 202, is made simply by mixing powdered urea and 35% hydrogen peroxide in the presence of stabili2ers, and crystaUi2ing the product by cooling or concentration. It is available in the form of crystals or tablets. The former contain about 35% H2O2, the latter about 34%. The solubihty in water is 510 g/L at 20°C. The solution decomposes above 55°C. [Pg.97]

Various techniques have been proposed for the recovery of pure succinic acid, including extraction (141—145), selective crystalliza tion (146—151), heating to dehydrate the acid and subsequent recovery of succinic anhydride by distillation (152), esterification foUowed by fractionation of the mixture of the esters (65—69), and separation as urea adduct (118,119). [Pg.537]

Norma/andBranc/jedAlip/jatic Hydrocarbons. The urea-adduction method for separating normal and branched aHphatic hydrocarbons can be carried out in sulfolane (38,39). The process obviates the necessity of handling and washing the soHd urea—normal paraffin adduct formed when a solution of urea in sulfolane is contacted with the hydrocarbon mixture. OveraH recovery by this process is typicaHy 85% normal paraffin purity is 98%. [Pg.69]

Sulfamation is the formation (245) of a nitrogen sulfur(VI) bond by the reaction of an amine and sulfur trioxide, or one of the many adduct forms of SO. Heating an amine with sulfamic acid is an alternative method. A practical example of sulfamation is the artificial sweetener sodium cyclohexylsulfamate [139-05-9] produced from the reaction of cyclohexylamine and sulfur trioxide (246,247) (see Sweeteners). Sulfamic acid is prepared from urea and oleum (248). Whereas sulfamation is not gready used commercially, sulfamic acid has various appHcations (see SuLFAMiC ACID AND SULFAMATES) (249—253). [Pg.84]

Ionic polymers are also formulated from TDI and MDI (43). Poly(urethane urea) and polyurea ionomers are obtained from divalent metal salts of /)-aminohen2oic acid, MPA, dialkylene glycol, and 2,4-TDI (44). In the case of polyureas, the glycol extender is omitted. If TDI is used in coatings apphcations, it is usually converted to a derivative to lower the vapor pressure. A typical TDI prepolymer is the adduct of TDI with trimethyl olpropane (Desmodur L). Carbodiimide-modified MDI offers advantages in polyester-based systems because of improved hydrolytic stabihty (45). Moisture cure systems based on aromatic isocyanates are also available. [Pg.350]

Currently, there is continuing work on an iadustry standard method for the direct determination of monomer, dimer, and trimer acids. Urea adduction (of the methyl esters) has been suggested as a means of determining monomer ia distilled dimer (74). The method is tedious and the nonadductiag branched-chain monomer is recovered with the polymeric fraction. A micro sublimation procedure was developed as an improvement on urea adduction for estimation of the polymer fraction. Incomplete removal of monomer esters or loss of dimer duriag distillation can lead to error (75). [Pg.116]

Urea is sufficiently important as an additive to PF resins for OSB to warrant some discussion. It has had a large favorable economie impact on the OSB industry. When used, it is generally added after the polymerization is complete. Thus, it is not part of the polymer and does not have any direet effect on polymer resistance to hydrolysis, as might be expected if it was part of the polymer backbone. Under alkaline pH conditions, urea-formaldehyde adducts do not polymerize at a rate that is significant compared to the PF polymerization therefore, the urea does not participate signifieantly in the euring proeess of the PF, despite the faet that it is present during the cure. Since urea is not present in the cured PF polymer per se, it does not detract from the durability of the polymer. Despite this, it is possible to see redueed OSB durability as a result of formulated urea if its use has led to actual PF polymer application rates that are too low. [Pg.894]

Even though UF adducts are known to be present in OSB, formaldehyde emissions are not elevated over those expected of an unmodified PF. There are three reasons for this. First, the molar ratio of formaldehyde-to-urea in these situations is very low. It is at least an order of magnitude lower than practical molar ratios for curable UF resin binders. Second, UF adducts are quite stable under the alkaline conditions that prevail in PF-bonded OSB. Finally, the urea only reacts with the formaldehyde that was left behind during polymerization and would have been largely emitted in pressing and cool-down. Urea additions have been shown to reduce PF formaldehyde emissions from hot pressing [121 ]. [Pg.895]

When hexafluoroacetone reacts with amides, urethanes [25], thioamides [26], amidines [27], sulfonamides [28, 29], sulfinainides [20], and f),0-dialkyl-amido-phosphates [27], the correspondmg semiamidals are formed m nearly quantitative yield The thermal stabihty of these adducts toward the retro reaction increases with the nucleophihcity of the ammo compound [5] Many polyfluonnated carbonyl compounds react likewise [22 22] On treatment of ureas [34], thioureas [34], thioamides [26], and C,77 diarylatmdmes [27, 25] first with hexa- fluoroacetone and then with dehydratmg agents, heterodienes are obtamed (equation 4)... [Pg.841]

The reaction of morpholine enamine of cyclohexanone with 1 mole of phenyl isocyanate has been reported (30,31) to give the monoadduet (49), consisting largely of the trisubstituted isomer, and with 2 moles of phenyl isocyanate, the bis adduct (50). That the bis adduct is a dicarboxyanilide rather than a urea derivative (32) such as 51 was shown by its mild hydrolysis to the ketone (52). Reaction of the morpholine enamine of 2-methylcyclo-... [Pg.19]

Forty years after the initial proposal, Sweet and Fissekis proposed a more detailed pathway involving a carbenium ion species. According to these authors the first step involved an aldol condensation between ethyl acetoacetate (6) and benzaldehyde (5) to deliver the aldol adduct 11. Subsequent dehydration of 11 furnished the key carbenium ion 12 which was in equilibrium with enone 13. Nucleophilic attack of 12 by urea then delivered ureide 14. Intramolecular cyclization produced a hemiaminal which underwent dehydration to afford dihydropyrimidinone 15. These authors demonstrated that the carbenium species was viable through synthesis. After enone 13 was synthesized, it was allowed to react with N-methyl urea to deliver the mono-N-methylated derivative of DHPM 15. [Pg.510]

In addition to modification of the catalyst, several variants of the Biginelli reaction have emerged as viable alternatives however, each method requires pre-formation of intermediates that are normally formed in the one-pot Biginelli reaction. First, Atwal and coworkers reported the reaction between aldol adducts 39 with urea 40a or thiourea 40b in the presence of sodium bicarbonate in dimethylformamide at 70°C to give 1,4-dihydropyrimidines 41. DHPM 42 was then produced by deprotection of 41. [Pg.514]

The oxidation of alkenes and allylic alcohols with the urea-EL202 adduct (UELP) as oxidant and methyltrioxorhenium (MTO) dissolved in [EMIM][BF4] as catalyst was described by Abu-Omar et al. [61]. Both MTO and UHP dissolved completely in the ionic liquid. Conversions were found to depend on the reactivity of the olefin and the solubility of the olefinic substrate in the reactive layer. In general, the reaction rates of the epoxidation reaction were found to be comparable to those obtained in classical solvents. [Pg.233]

The highest fixed nitrogen-containing fertilizer 46.7 wt %, urea is a white solid that is soluble in water and alcohol. It is usually sold in the form of crystals, prills, flakes, or granules. Urea is an active compound that reacts with many reagents. It forms adducts and clathrates with many... [Pg.145]

Urea possesses a unique property of forming adducts with n-paraffms. This is used in separating C12-C14 n-paraffms from kerosines for detergent production (Chapter 6). [Pg.147]

Use of the valine derived (4S )-3-acetyl-4-isopropyl-1,3-oxazolidine (8)92, the C2-symmetric reagents (2.5,55)-l-acetyl-2,5-bissubstituted pyrrolidine 994, or the doubly deprotonated acetyl urea /V-acetyl- V..V -bis[(.S)-l-phcnylethyl]urea (10), also does not lead to sufficient induced stereoselectivity combined with acceptable chemical yield. When the acetyl urea enolate is reacted with aliphatic and aromatic aldehydes, the diastereomeric adducts (ratios ranging from 1 1 to 3 1) may be separated by column chromatography to give ultimately both enantiomers of the 3-hydroxy acids in 99% ee110. [Pg.508]

Immediately upon addition of the urea-hydrogen peroxide adduct to the solution containing methyltrioxorhenium, a yellow color develops due to formation of the catalytically active rhenium peroxo complexes.3... [Pg.108]


See other pages where Urea adduction is mentioned: [Pg.460]    [Pg.460]    [Pg.57]    [Pg.460]    [Pg.460]    [Pg.57]    [Pg.414]    [Pg.414]    [Pg.1041]    [Pg.489]    [Pg.406]    [Pg.521]    [Pg.446]    [Pg.316]    [Pg.894]    [Pg.305]    [Pg.635]    [Pg.510]    [Pg.182]    [Pg.121]    [Pg.208]    [Pg.211]    [Pg.215]    [Pg.449]    [Pg.156]    [Pg.160]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Adducts urea dewaxing

Epoxidation Using Urea-H2O2 Adduct

Fatty urea adduct

Urea adduct

Urea adduct

Urea adduct, fatty acid

Urea ■ hydrogen peroxide adduct

Urea-adduction method

Urea-hydrocarbon adducts

© 2024 chempedia.info