Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultrafiltration cellulose

Bansal, I. K., and Wiley, A. J. (1974). Fractionation of spent sulphite liquor using ultrafiltration cellulose acetate membranes. Environ. 5c/. Technol. 8, 1085-1090. [Pg.206]

Membrane Sep r tion. The separation of components ofhquid milk products can be accompHshed with semipermeable membranes by either ultrafiltration (qv) or hyperfiltration, also called reverse osmosis (qv) (30). With ultrafiltration (UF) the membrane selectively prevents the passage of large molecules such as protein. In reverse osmosis (RO) different small, low molecular weight molecules are separated. Both procedures require that pressure be maintained and that the energy needed is a cost item. The materials from which the membranes are made are similar for both processes and include cellulose acetate, poly(vinyl chloride), poly(vinyHdene diduoride), nylon, and polyamide (see AFembrane technology). Membranes are commonly used for the concentration of whey and milk for cheesemaking (31). For example, membranes with 100 and 200 p.m are used to obtain a 4 1 reduction of skimmed milk. [Pg.368]

Cellulose acetate, the earhest reverse osmosis membrane, is still widely used. Asymmetric polyamide and thin-film composites of polyamide and several other polymers have also made gains in recent years whereas polysulfone is the most practical membrane material in ultrafiltration appHcations. [Pg.382]

Polymer Membranes These are used in filtration applications for fine-particle separations such as microfiltration and ultrafiltration (clarification involving the removal of l- Im and smaller particles). The membranes are made from a variety of materials, the commonest being cellulose acetates and polyamides. Membrane filtration, discussed in Sec. 22, has been well covered by Porter (in Schweitzer, op. cit., sec. 2.1). [Pg.1707]

Phosphoribosyl pyrophosphate synthetase (from human erythrocytes, or pigeon or chicken liver) [9015-83-2] Mr 60,000, [EC 2.7.6.1]. Purified 5100-fold by elution from DEAE-cellulose, fractionation with ammonium sulfate, filtration on Sepharose 4B and ultrafiltration. [Fox and Kelley J Biol Chem 246 5739 197h, Flaks Methods Enzymol6 158 1963 Kornberg et al. J Biol Chem 15 389 7955.]... [Pg.559]

A variety of synthetic polymers, including polycarbonate resins, substituted olefins, and polyelectrolyte complexes, are employed as ultrafiltration membranes. Many of these membranes can be handled dry, have superior organic solvent resistance, and are less sensitive to temperature and pH than cellulose acetate, which is widely used in RO systems. [Pg.345]

Ultrafiltration utilizes membrane filters with small pore sizes ranging from O.OlS t to in order to collect small particles, to separate small particle sizes, or to obtain particle-free solutions for a variety of applications. Membrane filters are characterized by a smallness and uniformity of pore size difficult to achieve with cellulosic filters. They are further characterized by thinness, strength, flexibility, low absorption and adsorption, and a flat surface texture. These properties are useful for a variety of analytical procedures. In the analytical laboratory, ultrafiltration is especially useful for gravimetric analysis, optical microscopy, and X-ray fluorescence studies. [Pg.347]

Membranes used for the pressure driven separation processes, microfiltration (MF), ultrafiltration (UF) and reverse osmosis (RO), as well as those used for dialysis, are most commonly made of polymeric materials. Initially most such membranes were cellulosic in nature. These ate now being replaced by polyamide, polysulphone, polycarbonate and several other advanced polymers. These synthetic polymers have improved chemical stability and better resistance to microbial degradation. Membranes have most commonly been produced by a form of phase inversion known as immersion precipitation.11 This process has four main steps ... [Pg.357]

Fig. 17.9. Purity comparison (SDS-PAGE) of the conventional purification process and integrated cell disrupt tion/fluidised bed adsorption.The numbers given in the flow sheet indicate the origin of samples and correspond to their respective lane numbers. Lanes M, low molecular weight markers 1, Erwinia disruptate, 15% biomass ww/v 2, eluate CM HyperD LS, fluidised bed 3, desalted eluate (after dia/ultrafiltration, 30 K MWCO membrane) 4, flow-through, DEAE fixed bed 5, elution, DEAE fixed bed 6, eluate CM HyperD LS 7, CM cellulose eluate 8, CM cellulose eluate, final 9, final commercial product. Fig. 17.9. Purity comparison (SDS-PAGE) of the conventional purification process and integrated cell disrupt tion/fluidised bed adsorption.The numbers given in the flow sheet indicate the origin of samples and correspond to their respective lane numbers. Lanes M, low molecular weight markers 1, Erwinia disruptate, 15% biomass ww/v 2, eluate CM HyperD LS, fluidised bed 3, desalted eluate (after dia/ultrafiltration, 30 K MWCO membrane) 4, flow-through, DEAE fixed bed 5, elution, DEAE fixed bed 6, eluate CM HyperD LS 7, CM cellulose eluate 8, CM cellulose eluate, final 9, final commercial product.
Traditionally, ultrafilters have been manufactured from cellulose acetate or cellulose nitrate. Several other materials, such as polyvinyl chloride and polycarbonate, are now also used in membrane manufacture. Such plastic-type membranes exhibit enhanced chemical and physical stability when compared with cellulose-based ultrafiltration membranes. An important prerequisite in manufacturing ultrafilters is that the material utilized exhibits low protein adsorptive properties. [Pg.137]

Cellophane is frequently used for dialysis and it has a pore size of approximately 4—8 gm, which makes it impermeable to molecules with a relative molecular mass in excess of about 10 000. The development of a variety of membrane materials in which the pore size is much more rigorously controlled, has led to wider applications of ultrafiltration (Table 3.11). Various cellulose and polycarbonate membranes are available with pore sizes down to 5 nm which are capable of excluding molecules with a relative molecular mass of about 50. The internal structure of such membranes, as well as the pore size, determines their exclusion range and as a result precise specifications of membranes vary from one manufacturer to another. [Pg.148]

Generally, a distinction can be made between membrane bioreactors based on cells performing a desired conversion and processes based on enzymes. In ceU-based processes, bacteria, plant and mammalian cells are used for the production of (fine) chemicals, pharmaceuticals and food additives or for the treatment of waste streams. Enzyme-based membrane bioreactors are typically used for the degradation of natural polymeric materials Hke starch, cellulose or proteins or for the resolution of optically active components in the pharmaceutical, agrochemical, food and chemical industry [50, 51]. In general, only ultrafiltration (UF) or microfiltration (MF)-based processes have been reported and little is known on the application of reverse osmosis (RO) or nanofiltration (NF) in membrane bioreactors. Additionally, membrane contactor systems have been developed, based on micro-porous polyolefin or teflon membranes [52-55]. [Pg.536]

In 1966, Cadotte developed a method for casting mlcroporous support film from polysulfone, polycarbonate, and polyphenylene oxide plastics ( ). Of these, polysulfone (Union Carbide Corporation, Udel P-3500) proved to have the best combination of compaction resistance and surface microporosity. Use of the mlcroporous sheet as a support for ultrathin cellulose acetate membranes produced fluxes of 10 to 15 gfd, an increase of about five-fold over that of the original mlcroporous asymmetric cellulose acetate support. Since that time, mlcroporous polysulfone has been widely adopted as the material of choice for the support film in composite membranes, while finding use itself in many ultrafiltration processes. [Pg.306]

Parkin, M.F. and Marshall, K.R., "The Cleaning of Tubular Cellulose Acetate Ultrafiltration Membranes", N.Z. Journ. [Pg.447]

W5. Windisch, R. M., and Bracken, M. M., Cerebrospinal fluid proteins Concentration by membrane ultrafiltration and fractionation by electrophoresis on cellulose acetate. Clin. Cherru 16,416-419 (1970). [Pg.62]

Membranes are made from different materials. Cellulose nitrate ultrafiltration membranes are of limited chemical and thermal compatibility and with imprecise cut-off. The membranes from polyvinylidene fluoride, polyaciyloiutrile or polysulphone possess good chemical compatibility are more stable over a very wide pH range and ate easy to clean. Problems with membrane fouling can usually be overcome by trcatment of the membranes with detergents, proteases or with acid or alkaline solutions. [Pg.232]

Filtration can remove fine suspended solids and microorganisms, and microfiltration membranes of cellulose acetate or polyamides are available that have pores 0.1-20 /xm in diameter. Clogging of such fine filters is an ever-present problem, and it is usual to pass the water through a coarser conventional filter first. Ultrafiltration with membranes having pores smaller than 0.1 fim requires application of pressures of a few bars to keep the membrane surface free of deposits, water flows parallel to the membrane surfaces, with only a small fraction passing through the membrane. The membranes typically consist of bundles of hollow cellulose acetate or polyamide fibers set in a plastic matrix. Ultrafiltration bears some resemblance to reverse osmosis technology, described in Section 14.4, with the major difference that reverse osmosis can remove dissolved matter, whereas ultrafiltration cannot. [Pg.265]

Whey protein concentrates (WPC), which are relatively new forms of milk protein products available for emulsification uses, have also been studied (4,28,29). WPC products prepared by gel filtration, ultrafiltration, metaphosphate precipitation and carboxymethyl cellulose precipitation all exhibited inferior emulsification properties compared to caseinate, both in model systems and in a simulated whipped topping formulation (2. However, additional work is proceeding on this topic and it is expected that WPC will be found to be capable of providing reasonable functionality in the emulsification area, especially if proper processing conditions are followed to minimize protein denaturation during their production. Such adverse effects on the functionality of WPC are undoubtedly due to their Irreversible interaction during heating processes which impair their ability to dissociate and unfold at the emulsion interface in order to function as an emulsifier (22). [Pg.212]

Ultrafiltration through a 30000 molecular mass cut-off cellulose membrane is another cleanup procedure that has been successfully applied in the analysis of luxabendazole residues in biological fluids (364). Although efficient, this technique was not used for treatment of urine samples since it would have implied working with low flow rates and a consequent increase in analysis time. [Pg.1010]

The principles behind ultrafiltration are sometimes misunderstood. The nomenclature implies that separations are the result of physical trapping of the particles and molecules by the filter. With polycarbonate and fiberglass filters, separations are made primarily on the basis of physical size. Other filters (cellulose nitrate, polyvinylidene fluoride, and to a lesser extent cellulose acetate) trap particles that cannot pass through the pores, but also retain macromolecules by adsorption. In particular, these materials have protein and nucleic acid binding properties. Each type of membrane displays a different affinity for various molecules. For protein, the relative binding affinity is polyvinylidene fluoride > cellulose nitrate > cellulose acetate. We can expect to see many applications of the affinity membranes in the future as the various membrane surface chemistries are altered and made more specific. Some applications are described in the following pages. [Pg.50]

Most ultrafiltration membranes are porous, asymmetric, polymeric structures produced by phase inversion, i.e., the gelation or precipitation of a species from a soluble phase. See also Membrane Separations Technology. Membrane structure is a function of the materials used (polymer composition, molecular weight distribution, solvent system, etc) and the mode of preparation (solution viscosity, evaporation time, humidity, etc.). Commonly used polymers include cellulose acetates, polyamides, polysulfoncs, dyncls (vinyl chlondc-acrylonitrile copolymers) and puly(vinylidene fluoride). [Pg.1635]


See other pages where Ultrafiltration cellulose is mentioned: [Pg.254]    [Pg.254]    [Pg.532]    [Pg.778]    [Pg.45]    [Pg.457]    [Pg.5]    [Pg.200]    [Pg.627]    [Pg.315]    [Pg.5]    [Pg.300]    [Pg.641]    [Pg.156]    [Pg.135]    [Pg.100]    [Pg.632]    [Pg.174]    [Pg.1441]    [Pg.82]    [Pg.871]    [Pg.144]    [Pg.189]    [Pg.191]    [Pg.396]    [Pg.12]    [Pg.203]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Ultrafiltrate

© 2024 chempedia.info