Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tubular reactor polymerization

In the preceding discussion of the operation of the tubular reactor polymerization scheme, we stated that the heat of reaction is removed by through-wall heat transfer. What exactly occurs in the vicinity of the wall If the characteristic of the high-pressure (300 bar) naphthalene isobar is interpreted as a schematic representation of the solubility of polyethylene in ethylene at a pressure of 2,700 bar, we can use it to predict that polyethylene will precipitate in the boundary layer near any relatively cold surfaces in the reactor or downstream lines. If the precipitation of polyethylene does occur on these internal surfaces and if it is not appropriately removed, the buildup of the polymer on the wall can result in decreased heat transfer from the hot gas-polymer solution, and the attendant decrease in heat transfer can lead to the runaway reaction that is occasionally encountered in high-pressure polyethylene plants. [Pg.191]

In this pyrolysis, sub atmospheric partial pressures are achieved by employing a diluent such as steam. Because of the corrosive nature of the acids (HE and HCl) formed, the reactor design should include a platinum-lined tubular reactor made of nickel to allow atmospheric pressure reactions to be mn in the presence of a diluent. Because the pyrolysate contains numerous by-products that adversely affect polymerization, the TFE must be purified. Refinement of TFE is an extremely complex process, which contributes to the high cost of the monomer. Inhibitors are added to the purified monomer to avoid polymerization during storage terpenes such as t7-limonene and terpene B are effective (10). [Pg.348]

Initiators. The degree of polymerization is controlled by the addition rate of initiator(s). Initiators (qv) are chosen primarily on the basis of half-life, the time required for one-half of the initiator to decay at a specified temperature. In general, initiators of longer half-Hves are chosen as the desired reaction temperature increases they must be well dispersed in the reactor prior to the time any substantial reaction takes place. When choosing an initiator, several factors must be considered. For the autoclave reactor, these factors include the time permitted for completion of reaction in each zone, how well the reactor is stirred, the desired reaction temperature, initiator solubiUty in the carrier, and the cost of initiator in terms of active oxygen content. For the tubular reactors, an additional factor to take into account is the position of the peak temperature along the length of the tube (9). [Pg.375]

Solution Polymerization. Solution polymerization of vinyl acetate is carried out mainly as an intermediate step to the manufacture of poly(vinyl alcohol). A small amount of solution-polymerized vinyl acetate is prepared for the merchant market. When solution polymerization is carried out, the solvent acts as a chain-transfer agent, and depending on its transfer constant, has an effect on the molecular weight of the product. The rate of polymerization is also affected by the solvent but not in the same way as the degree of polymerization. The reactivity of the solvent-derived radical plays an important part. Chain-transfer constants for solvents in vinyl acetate polymerizations have been tabulated (13). Continuous solution polymers of poly(vinyl acetate) in tubular reactors have been prepared at high yield and throughput (73,74). [Pg.465]

The reaction section consists of the high pressure reactors filled with catalyst, and means to take away or dissipate the high heat of reaction (300-500 Btu/lb of olefin polymerized). In the tubular reactors, the catalyst is inside a multiplicity of tubes which are cooled by a steam-water condensate jacket. Thus, the heat of reaction is utilized to generate high pressure steam. In the chamber process, the catalyst is held in several beds in a drum-type reactor with feed or recycled product introduced as a quench between the individual beds. [Pg.226]

The SCB distribution (SCBD) has been extensively studied by fractionation based on compositional difference as well as molecular size. The analysis by cross fractionation, which involves stepwise separation of the molecules on the basis of composition and molecular size, has provided information of inter- and intramolecular SCBD in much detail. The temperature-rising elution fractionation (TREE) method, which separates polymer molecules according to their composition, has been used for HP LDPE it has been found that SCB composition is more or less uniform [24,25]. It can be observed from the appearance of only one melt endotherm peak in the analysis by differential scanning calorimetry (DSC) (Fig. 1) [26]. Wild et al. [27] reported that HP LDPE prepared by tubular reactor exhibits broader SCBD than that prepared by an autoclave reactor. The SCBD can also be varied by changing the polymerization conditions. From the cross fractionation of commercial HP LDPE samples, it has been found that low-MW species generally have more SCBs [13,24]. [Pg.278]

An example of the liquid-phase polymerization is the Spheripol process (Figure 12-3), which uses a tubular reactor. Copolymerization... [Pg.330]

In the diacid mediod, die PA salt is made first. A solution of this PA salt in water can be used for the polymerization. In the temperature range where the reaction rates are high, the diamines are volatile, and thus, it is preferable to carry out the prepolymerization under pressure. The prepolymerization can be carried out either at 220-250°C for 1 h or at 280-320°C in a matter of seconds. In the latter case, die reaction is carried out in a small-diameter tubular reactor.64 Although a prepolymerization under pressure is preferred, Nielinger28 has described a polymerization at atmospheric pressure at 210°C, whereby the loss in diamine is compensated for. [Pg.180]

Table I provides an overview of general reactor designs used with PS and HIPS processes on the basis of reactor function. The polymer concentrations characterizing the mass polymerizations are approximate there could be some overlapping of agitator types with solids level beyond that shown in the tcd>le. Polymer concentration limits on HIPS will be lower because of increased viscosity. There are also additional applications. Tubular reactors, for example, in effect, often exist as the transfer lines between reactors and in external circulating loops associated with continuous reactors. Table I provides an overview of general reactor designs used with PS and HIPS processes on the basis of reactor function. The polymer concentrations characterizing the mass polymerizations are approximate there could be some overlapping of agitator types with solids level beyond that shown in the tcd>le. Polymer concentration limits on HIPS will be lower because of increased viscosity. There are also additional applications. Tubular reactors, for example, in effect, often exist as the transfer lines between reactors and in external circulating loops associated with continuous reactors.
Various reactor combinations are used. For example, the product from a relatively low solids batch-mass reactor may be transferred to a suspension reactor (for HIPS), press (for PS), or unagitated batch tower (for PS) for finishing. In a similar fashion, the effluent from a continuous stirred tank reactor (CSTR) may be transferred to a tubular reactor or an unagitated or agitated tower for further polymerization before devolatilization. [Pg.72]

Experimental work with styrene in tubular reactors has been reported (39) where viscosities were relatively low due to conversions below 32%. However, Lynn ( ) has concluded that a laminar flow tubular reactor for styrene polymerization is probably technically infeasible due to the distortion in velocity... [Pg.109]

Continuous-Emulsion Polymerization of Styrene in a Tubular Reactor... [Pg.113]

The advantages of continuous tubular reactors are well known. They include the elimination of batch to batch variations, a large heat transfer area and minimal handling of chemical products. Despite these advantages there are no reported commercial instances of emulsion polymerizations done in a tubular reactor instead the continuous emulsion process has been realized in series-connected stirred tank reactors (1, . ... [Pg.113]

A few workers have examined the continuous emulsion polymerization process in a tubular reactor (, 5,, the initial work... [Pg.113]

A summary of the nine batch reactor emulsion polymerizations and fifteen tubular reactor emulsion polymerizations are presented in Tables III IV. Also, many tubular reactor pressure drop measurements were performed at different Reynolds numbers using distilled water to determined the laminar-turbulent transitional flow regime. [Pg.119]

Continuous Polymerizations As previously mentioned, fifteen continuous polymerizations in the tubular reactor were performed at different flow rates (i.e. (Nj g) ) with twelve runs using identical formulations and three runs having different emulsifier and initiator concentrations. A summary of the experimental runs is presented in Table IV and the styrene conversion vs reaction time data are presented graphically in Figures 7 to 9. It is important to note that the measurements of pressure and temperature profiles, flow rate and the latex properties indicated that steady state operation was reached after a period corresponding to twice the residence time in the tubular reactor. This agrees with Ghosh s results ). [Pg.123]

The styrene conversion versus reaction time results for runs in the laminar flow regime are plotted in Figure 8. Both the rate of polymerization and the styrene conversion increase with increasing flow rate as noted previously (7). The conversion profile for the batch experimental run (B-3) is presented as a dashed line for comparison. It can be seen that the polymerization rates for runs with (Nj e e 2850 are greater than the corresponding batch polymerization with a conversion plateau being reached after about thirty minutes of reaction. This behavior is similar to the results obtained in a closed loop tubular reactor (7J) and is probably due to an excessively rapid consumption of initiator in a... [Pg.123]

Figure 7. Monomer conversion vs, polymerization time in the helical tubular reactor laminar flow regime... Figure 7. Monomer conversion vs, polymerization time in the helical tubular reactor laminar flow regime...
The work reported here is part of a continuing program on the emulsion polymerization of styrene in a tubular reactor. It is now evident that the reactor construction is of primary importance in avoiding the problem of reactor plugging. The plugging is associated with a wall effect so that both the reactor dimensions and the nature of the wall surface are important. [Pg.133]

The maximum rate of polymerization has been confirmed to occur at the laminar-turbulent flow transition. The rate of polymerization was observed to be maximum at the transition for both straight reactors as well as for the helically-coiled reactor for which the transition is at a Reynolds number higher than that of the straight tube. The helically coiled tubular reactor is of industrial interest since it is much more compact and, consequently, the cost and the temperature control problems are more tractable. [Pg.133]

The study of the peak temperature sensitivity to the reactor operating parameters and the construction of sensitivity boundary curves for stable reactor operation were previously reported ( l). This paper presents a computer study on conceptual relationships between the conversion-product properties and the reactor operating parameters in a plug flow tubular reactor of free radical polymerization. In particular, a contour map of conversion-molecular weight relationships in a reactor of fixed size is presented and the sensitivity of its relationship to the choice of initiator system, solvent system and heat transfer system are discussed. [Pg.221]

The computer model used for this analysis is based on a plug flow tubular reactor operating under restraints of the commonly accepted kinetic mechanism for polymerization reactions ( 5 ) ... [Pg.222]

Figure 1. Typical reactor temperature profile for continuous addition polymerization a plug-flow tubular reactor. Kinetic parameters for the initiator 1 = 10 ppm Ea = 32.921 kcal/mol In = 26.492 In sec f = 0.5. Reactor parameter [(4hT r)/ (DpCp)] = 5148.2. [(Cp) = heat capacity of the reaction mixture (p) = density of the reaction mixture (h) = overall heat-transfer coefficient (Tf) = reactor jacket temperature (r) = reactor residence time (D) = reactor diameter]. Figure 1. Typical reactor temperature profile for continuous addition polymerization a plug-flow tubular reactor. Kinetic parameters for the initiator 1 = 10 ppm Ea = 32.921 kcal/mol In = 26.492 In sec f = 0.5. Reactor parameter [(4hT r)/ (DpCp)] = 5148.2. [(Cp) = heat capacity of the reaction mixture (p) = density of the reaction mixture (h) = overall heat-transfer coefficient (Tf) = reactor jacket temperature (r) = reactor residence time (D) = reactor diameter].
The ability to manipulate reactor temperature profile in the polymerization tubular reactor is very important since it directly relates to conversion and resin product properties. This is often done by using different initiators at various concentrations and at different reactor jacket temperature. The reactor temperature response in terms of the difference between the jacket temperature and the peak temperature (0=Tp-Tj) is plotted in Figure 2 as a function of the jacket temperature for various inlet initiator concentrations. The temperature response not only depends on the jacket temperature but also, for certain combinations of the variables, it is very sensitive to the jacket temperature. [Pg.228]

Figure 4. Operation of a plug-flow tubular addition polymerization reactor of fixed size using a specified free-radical initiator (initiator kinetic parameters Ea = 32,921 Kcal/mol In k/ = 26,492 In sec f = 0,5 10 ppm initiation, 1,0 mol %... Figure 4. Operation of a plug-flow tubular addition polymerization reactor of fixed size using a specified free-radical initiator (initiator kinetic parameters Ea = 32,921 Kcal/mol In k/ = 26,492 In sec f = 0,5 10 ppm initiation, 1,0 mol %...
Figure 6, Ejfect of solvent concentration on the molecular weight-conversion rehtionships of a tubular-addition polymerization reactor of fix size using a specified initiator type. Each point along the curves represents an optimum initiator feed concentrationr-reactor jacket temperature combination, (kinetic parameters of the initiator Ea = 24,948 Kcal/mol In k/ = 26,494 In sec f = 0.5)... Figure 6, Ejfect of solvent concentration on the molecular weight-conversion rehtionships of a tubular-addition polymerization reactor of fix size using a specified initiator type. Each point along the curves represents an optimum initiator feed concentrationr-reactor jacket temperature combination, (kinetic parameters of the initiator Ea = 24,948 Kcal/mol In k/ = 26,494 In sec f = 0.5)...
Figure 12. Effect of the initiator activation energy on the initiator usage in a tubular-addition polymerization reactor constant frequency factor (the conversion is optimized In k = 26.492 In sec )... Figure 12. Effect of the initiator activation energy on the initiator usage in a tubular-addition polymerization reactor constant frequency factor (the conversion is optimized In k = 26.492 In sec )...
Figure 13. Effect of an initiator change on the conversion improvement in the tubular-addition polymerization reactor... Figure 13. Effect of an initiator change on the conversion improvement in the tubular-addition polymerization reactor...
A theoretical polymerization tubular reactor model was used to study the effects of reactor operating parameters on conversion... [Pg.245]

There are many interesting reports in the literature where computer simulations have been used to examine not only idealized cases but have also been used in an attempt to explain segregation and viscosity effect in unperturbed polymerization reactors (6). Some experimental work has been reported (7, 8). It is obvious, however, that although there is some change in the MWD with conversion in the batch and tubular reactor cases and that broadening of the MWD occurs as a result of imperfect mixing, there is no effective means available for controlling the MWD of the polymer from unperturbed or steady-state reactors. [Pg.254]

FIGURE 13.7 Performance of a laminar flow, tubular reactor for the bulk polymerization of styrene Tin = 35°C and F = 1 h. (a) Stability regions, (b) Monomer-conversion within the stable region. [Pg.497]


See other pages where Tubular reactor polymerization is mentioned: [Pg.76]    [Pg.98]    [Pg.373]    [Pg.415]    [Pg.508]    [Pg.2102]    [Pg.235]    [Pg.109]    [Pg.113]    [Pg.114]    [Pg.115]    [Pg.134]    [Pg.222]    [Pg.413]    [Pg.309]    [Pg.493]    [Pg.496]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Fast-Polymerizing Monomer in Tubular Reactor

Polymerization in tubular reactors

Polymerization of styrene in a tubular reactor

Polymerization tubular reactor emulsion

Polymerization tubular reactor model

Tubular reactor batch polymerizations

Tubular reactor continuous polymerizations

Tubular reactor seeded emulsion polymerization

Tubular reactor, plasma polymerization

Tubular reactors

© 2024 chempedia.info