Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tubular reactor continuous polymerizations

Solution Polymerization. Solution polymerization of vinyl acetate is carried out mainly as an intermediate step to the manufacture of poly(vinyl alcohol). A small amount of solution-polymerized vinyl acetate is prepared for the merchant market. When solution polymerization is carried out, the solvent acts as a chain-transfer agent, and depending on its transfer constant, has an effect on the molecular weight of the product. The rate of polymerization is also affected by the solvent but not in the same way as the degree of polymerization. The reactivity of the solvent-derived radical plays an important part. Chain-transfer constants for solvents in vinyl acetate polymerizations have been tabulated (13). Continuous solution polymers of poly(vinyl acetate) in tubular reactors have been prepared at high yield and throughput (73,74). [Pg.465]

Continuous polymerization processes for PA-6,6 have been reported for over 30 years.5,6,28 Prepolymerization in tubular (Fig. 3.21) or baffled reactors is particularly well suited to continuous polymerization. The polymerization of prepolymers to high-molecular-weight materials in a continuous process is more difficult to control as small differences is molecular weights result in large differences in viscosities. Viscosity differences result in different hold-up times in die reactor and thus nonhomogeneous products. [Pg.167]

Table I provides an overview of general reactor designs used with PS and HIPS processes on the basis of reactor function. The polymer concentrations characterizing the mass polymerizations are approximate there could be some overlapping of agitator types with solids level beyond that shown in the tcd>le. Polymer concentration limits on HIPS will be lower because of increased viscosity. There are also additional applications. Tubular reactors, for example, in effect, often exist as the transfer lines between reactors and in external circulating loops associated with continuous reactors. Table I provides an overview of general reactor designs used with PS and HIPS processes on the basis of reactor function. The polymer concentrations characterizing the mass polymerizations are approximate there could be some overlapping of agitator types with solids level beyond that shown in the tcd>le. Polymer concentration limits on HIPS will be lower because of increased viscosity. There are also additional applications. Tubular reactors, for example, in effect, often exist as the transfer lines between reactors and in external circulating loops associated with continuous reactors.
Various reactor combinations are used. For example, the product from a relatively low solids batch-mass reactor may be transferred to a suspension reactor (for HIPS), press (for PS), or unagitated batch tower (for PS) for finishing. In a similar fashion, the effluent from a continuous stirred tank reactor (CSTR) may be transferred to a tubular reactor or an unagitated or agitated tower for further polymerization before devolatilization. [Pg.72]

Continuous-Emulsion Polymerization of Styrene in a Tubular Reactor... [Pg.113]

The advantages of continuous tubular reactors are well known. They include the elimination of batch to batch variations, a large heat transfer area and minimal handling of chemical products. Despite these advantages there are no reported commercial instances of emulsion polymerizations done in a tubular reactor instead the continuous emulsion process has been realized in series-connected stirred tank reactors (1, . ... [Pg.113]

A few workers have examined the continuous emulsion polymerization process in a tubular reactor (, 5,, the initial work... [Pg.113]

Continuous Polymerizations As previously mentioned, fifteen continuous polymerizations in the tubular reactor were performed at different flow rates (i.e. (Nj g) ) with twelve runs using identical formulations and three runs having different emulsifier and initiator concentrations. A summary of the experimental runs is presented in Table IV and the styrene conversion vs reaction time data are presented graphically in Figures 7 to 9. It is important to note that the measurements of pressure and temperature profiles, flow rate and the latex properties indicated that steady state operation was reached after a period corresponding to twice the residence time in the tubular reactor. This agrees with Ghosh s results ). [Pg.123]

The work reported here is part of a continuing program on the emulsion polymerization of styrene in a tubular reactor. It is now evident that the reactor construction is of primary importance in avoiding the problem of reactor plugging. The plugging is associated with a wall effect so that both the reactor dimensions and the nature of the wall surface are important. [Pg.133]

Figure 1. Typical reactor temperature profile for continuous addition polymerization a plug-flow tubular reactor. Kinetic parameters for the initiator 1 = 10 ppm Ea = 32.921 kcal/mol In = 26.492 In sec f = 0.5. Reactor parameter [(4hT r)/ (DpCp)] = 5148.2. [(Cp) = heat capacity of the reaction mixture (p) = density of the reaction mixture (h) = overall heat-transfer coefficient (Tf) = reactor jacket temperature (r) = reactor residence time (D) = reactor diameter]. Figure 1. Typical reactor temperature profile for continuous addition polymerization a plug-flow tubular reactor. Kinetic parameters for the initiator 1 = 10 ppm Ea = 32.921 kcal/mol In = 26.492 In sec f = 0.5. Reactor parameter [(4hT r)/ (DpCp)] = 5148.2. [(Cp) = heat capacity of the reaction mixture (p) = density of the reaction mixture (h) = overall heat-transfer coefficient (Tf) = reactor jacket temperature (r) = reactor residence time (D) = reactor diameter].
There are many variations on this theme. Fed-batch and continuous emulsion polymerizations are common. Continuous polymerization in a CSTR is dynamically unstable when free emulsifier is present. Oscillations with periods of several hours will result, but these can be avoided by feeding the CSTR with seed particles made in a batch or tubular reactor. [Pg.502]

Low density polyethylene is made at high pressures in one of two types of continuous reactor. Autoclave reactors are large stirred pressure vessels, which rely on chilled incoming monomer to remove the heat of polymerization. Tubular reactors consist of long tubes with diameters of approximately 2.5 cm and lengths of up to 600 m. Tubular reactors have a very high surface-to-volume ratio, which permits external cooling to remove the heat of polymerization. [Pg.289]

Polymer production technology involves a diversity of products produced from even a single monomer. Polymerizations are carried out in a variety of reactor types batch, semi-batch and continuous flow stirred tank or tubular reactors. However, very few commercial or fundamental polymer or latex properties can be measured on-line. Therefore, if one aims to develop and apply control strategies to achieve desired polymer (or latex) property trajectories under such a variety of conditions, it is important to have a valid mechanistic model capable of predicting at least the major effects of the process variables. [Pg.219]

Loop A continuous process for polymerizing aqueous emulsions of olefinic compounds such as vinyl acetate. Polymerization takes place in a tubular reactor (the loop) with recycle. Invented by Gulf Oil Canada in 1971 and further developed by several United Kingdom paint companies. It is now used for making copolymers of vinyl acetate with ethylene, used in solvent-free paints and adhesives. [Pg.166]

Although the early literature described the application of a tubular reactor for the production of SBR latexes(1), the standard continuous emulsion polymerization processes for SBR polymerization still consist of continuous stirred tank reactors(CSTR s) and all of the recipe ingredients are normally fed into the first reactor and a latex is removed from the last one, as shown in Figure 1. However, it is doubtful whether this conventional reactor combination and operation method is the most efficient in continuous emulsion polymerization. As is well known, the kinetic behavior of continuous emulsion polymerization differs very much according to the kind of monomers. In this paper, therefore, the discussion about the present subject will be advanced using the... [Pg.125]

While vinyl acetate is normally polymerized in batch or continuous stirred tank reactors, continuous reactors offer the possibility of better heat transfer and more uniform quality. Tubular reactors have been used to produce polystyrene by a mass process (1, 2), and to produce emulsion polymers from styrene and styrene-butadiene (3 -6). The use of mixed emulsifiers to produce mono-disperse latexes has been applied to polyvinyl toluene (5). Dunn and Taylor have proposed that nucleation in seeded vinyl acetate emulsion is prevented by entrapment of oligomeric radicals by the seed particles (6j. Because of the solubility of vinyl acetate in water, Smith -Ewart kinetics (case 2) does not seem to apply, but the kinetic models developed by Ugelstad (7J and Friis (8 ) seem to be more appropriate. [Pg.561]

FIG. 19-14 Batch and continuous polymerizations, (a) Polyethylene in a tubular flow reactor, up to 2 km long by 6.4-cm ID. (b) Batch process for polystyrene, (c) Batch-continuous process for polystyrene, (d) Suspension (bead) process for polyvinylchloride, (e) Emulsion process for polyvinylchloride. (Ray and Laurence,... [Pg.24]

Chain Reaction with Termination. More work has been done on this mechanism, using free radical polymerization as the principle example. As shown in Table IV, batch polymerization has received far more interest within this area than the simpler case of continuous polymerization in a stirred tank, presumably because of commercial laboratory practice. The limited work on tubular reactors is not shown and will be discussed separately later. [Pg.30]

Reflecting the importance of continuous emulsion polymerization processes, numerous investigations have been carried out to date, which are categorized into three groups (1) studies on the reactor configuration (stirred-tank reactors, tubular type reactors such as a simple tubular reactors, pulsed tubular reactors... [Pg.108]

The stirred-tank reactor and the tubular reactor are two basic reactors used for continuous processes, so much of the experimental and theoretical studies pubhshed to date on continuous emulsion polymerization have been conducted using these reactors. The most important elements in the theory of continuous emulsion polymerization in a stirred-tank reactor or in stirred-tank reactor trains were presented by Gershberg and Longfleld [330]. They started with the S-E theory for particle formation (Case B), employing the same assumptions as stated in Sect. 3.3, and proposed the balance equation describing the steady-state number of polymer particles produced as ... [Pg.109]

The data on particle size distributions for both PVA and PMMA emulsions suggest that small particles could be quite important in the kinetic scheme, and that the larger particles probably grow by internal polymerization and by flocculation with smaller particles. The experiments with the tubular reactor installed upstream of the CSTR demonstrate a practical way to eliminate uncontrolled transients with continuous systems. We believe that the particles generated in the tube prevent CSTR oscillations by avoiding the unstable particle formation reactions in the CSTR. Berrens (8 ) accomplished the same results by using a particle seed in the feed stream to a CSTR with PVC emulsion polymerizations. [Pg.357]


See other pages where Tubular reactor continuous polymerizations is mentioned: [Pg.76]    [Pg.113]    [Pg.134]    [Pg.413]    [Pg.496]    [Pg.338]    [Pg.336]    [Pg.116]    [Pg.26]    [Pg.234]    [Pg.1]    [Pg.200]    [Pg.541]    [Pg.434]    [Pg.496]    [Pg.505]    [Pg.7]    [Pg.24]    [Pg.93]    [Pg.84]    [Pg.11]    [Pg.113]    [Pg.113]    [Pg.114]   
See also in sourсe #XX -- [ Pg.130 ]




SEARCH



Continuous tubular reactor

Polymerization continued)

Polymerization continued) continuous

Tubular reactor polymerization

Tubular reactors

© 2024 chempedia.info