Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactor temperature profiles

On the other hand, this type of cooling permits the study of increasing or decreasing temperature profiles in the jacket and their influence on the inner temperature profile, reactor performance, and stability. For this type of study a reactor tube is needed that is large enough to accommodate an inner thermowell holding a multiple thermocouple assembly. [Pg.41]

Level (3) global e.g., reactor model some key parameters reactor volume, mixing/flow, residence time distribution, temperature profile, reactor type... [Pg.3]

Compaction, 351 Composition control, 40, 43 Composition profiles. See Temperature profiles, reactors Compressibility factor, 162... [Pg.748]

Temperature profiles, reactors ammonia synthesis, 582, 584 cement kiln, 590 cracking of petroleum, 595 endo- and exothermic processes, 584 jacketed tubular reactor, 584 methanol synthesis, 580 phosgene synthesis, 594 reactor with internal heat exchange, 584 sulfur dioxide oxidation, 580... [Pg.755]

Because the characteristic of tubular reactors approximates plug-flow, they are used if careful control of residence time is important, as in the case where there are multiple reactions in series. High surface area to volume ratios are possible, which is an advantage if high rates of heat transfer are required. It is sometimes possible to approach isothermal conditions or a predetermined temperature profile by careful design of the heat transfer arrangements. [Pg.54]

Figure 13.16 shows two possible thermal profiles for endothermic plug-fiow reactors. This time the temperature falls for low rates of heat addition and/or high heat of reaction. The temperature rises for the reverse conditions. Under conditions between the profiles shown in Fig. 13.16, a minimum can occur in the temperature profile at an intermediate point between the inlet and exit. [Pg.327]

Figure 8 shows the characteristic sawtooth temperature profile which represents the thermodynamic inefficiency of this reactor type as deviations from the maximum reaction rate. Catalyst productivity is further reduced because not all of the feed gas passes through all of the catalyst. However, the quench converter has remained the predominant reactor type with a proven record of reflabiUty. [Pg.279]

A hst of polyol producers is shown in Table 6. Each producer has a varied line of PPO and EOPO copolymers for polyurethane use. Polyols are usually produced in a semibatch mode in stainless steel autoclaves using basic catalysis. Autoclaves in use range from one gallon (3.785 L) size in research faciUties to 20,000 gallon (75.7 m ) commercial vessels. In semibatch operation, starter and catalyst are charged to the reactor and the water formed is removed under vacuum. Sometimes an intermediate is made and stored because a 30—100 dilution of starter with PO would require an extraordinary reactor to provide adequate stirring. PO and/or EO are added continuously until the desired OH No. is reached the reaction is stopped and the catalyst is removed. A uniform addition rate and temperature profile is required to keep unsaturation the same from batch to batch. The KOH catalyst can be removed by absorbent treatment (140), extraction into water (141), neutralization and/or crystallization of the salt (142—147), and ion exchange (148—150). [Pg.353]

Inert combustion gases are injected directly into the reacting stream in flame reactors. Figures 23-22 and 22>-22d show two such devices used for maldng acetylene from light hydrocarbons and naphthas Fig. 23-22 shows a temperature profile, reaction times in ms. [Pg.2099]

FIG. 23-43 Reactors for solids, (a) Temperature profiles in a rotary cement lain, (h) A multiple hearth reactor, (c) Vertical lain for lime burning, 55 ton/d. (d) Five-stage fluidized bed lime burner, 4 by 14 m, 100 ton/d. (e) A fluidized bed for roasting iron sulfides. (/) Conditions in a vertical moving bed (blast furnace) for reduction of iron oxides, (g) A mechanical salt cake furnace. To convert ton/d to kg/h, multiply by 907. [Pg.2125]

Plug Flow Reactor (PFR) A plug flow reactor is a tubular reactor where the feed is continuously introduced at one end and the products continuously removed from the other end. The concentration/temperature profile in the reactor varies with position. [Pg.165]

The need to keep a concave temperature profile for a tubular reactor can be derived from the former multi-stage adiabatic reactor example. For this, the total catalyst volume is divided into more and more stages, keeping the flow cross-section and mass flow rate unchanged. It is not too difficult to realize that at multiple small stages and with similar small intercoolers this should become something like a cooled tubular reactor. Mathematically the requirement for a multi-stage reactor can be manipulated to a different form ... [Pg.203]

This result means that the reactor is insensitive if the temperature profile is concave toward the reactor length axis, and the inflection point is avoided. If the AT exceeds that permitted by the previous criterion—the limit set by RT /E— an inflection of the temperature vs., tube length will occur and thermal runaway will set in. Just before runway sets in the temperature at the hot spot can be 1.4 times higher than RT /E. [Pg.204]

Longitudinal temperature profile and conversion in a reactor for the hydrogenation of nitrobenzene... [Pg.490]

In general, the optimum conditions cannot be precisely attained in real reactors. Therefore, the selection of the reactor type is made to approximate the optimum conditions as closely as possible. For this purpose, mathematical models of the process in several different types of reactors are derived. The optimum condition for selected parameters (e.g., temperature profile) is then compared with those obtained from the mathematical expressions for different reactors. Consequently, selection is based on the reactor type that most closely approaches the optimum. [Pg.1045]

This involves knowledge of chemistry, by the factors distinguishing the micro-kinetics of chemical reactions and macro-kinetics used to describe the physical transport phenomena. The complexity of the chemical system and insufficient knowledge of the details requires that reactions are lumped, and kinetics expressed with the aid of empirical rate constants. Physical effects in chemical reactors are difficult to eliminate from the chemical rate processes. Non-uniformities in the velocity, and temperature profiles, with interphase, intraparticle heat, and mass transfer tend to distort the kinetic data. These make the analyses and scale-up of a reactor more difficult. Reaction rate data obtained from laboratory studies without a proper account of the physical effects can produce erroneous rate expressions. Here, chemical reactor flow models using matliematical expressions show how physical... [Pg.1116]

The total reactor volume required is independent of the number of beds in the series. This is evident because (a) all the beds operate with the same temperature profile and essentially the same pressure, (b) the inlet gas composition is the same for all the beds, and (c) the outlet gas composition is the same for all beds. Hence, the average driving force is the same for all beds, and the catalyst volume is simply related to the total production of methane. [Pg.31]

This study was run in a laboratory bench-scale unit with 0.75-in. reactor tubes. The catalysts were sized to 10 X 12 mesh and diluted nine-to-one with Si02 in order to spread the reaction out through the bed and to permit measurement of temperature profiles, the profile being an... [Pg.57]

In all tests, the temperature in the first- and second-stage reactors was kept within the necessary temperature limits of 288°-482°C. Because the carbon monoxide concentration was low in many of the tests, the second stage was not used to full capacity as is indicated by the temperature rise in runs 23, 24, and 27. The temperature profile shows the characteristic rise to a steady value. With the space velocities used (<5000 ft3/ft3 hr), the temperature profile is fully developed in the first stage within 30.0 in. of the top of the catalyst bed. A characteristic dip in temperature was observed over the first 8-10 in. of the catalyst bed in all runs. This temperature profile may indicate the presence of deactivated catalyst in this region, but, until the catalyst can be removed for examination, the cause of the temperature drop cannot be determined. There is no evidence that this low temperature zone is becoming progressively deeper. It is possible that an unrecorded brief upset in the purification system may have poisoned some of the top catalyst layers. [Pg.143]


See other pages where Reactor temperature profiles is mentioned: [Pg.282]    [Pg.282]    [Pg.56]    [Pg.147]    [Pg.48]    [Pg.373]    [Pg.433]    [Pg.127]    [Pg.370]    [Pg.418]    [Pg.459]    [Pg.697]    [Pg.698]    [Pg.2078]    [Pg.2100]    [Pg.405]    [Pg.508]    [Pg.1046]    [Pg.32]    [Pg.80]    [Pg.137]    [Pg.118]   


SEARCH



Adiabatic plug flow reactors temperature profile, 287

Axial Temperature Profiles in MicroChannel Reactors

Axial temperature profiles reactors

Catalytic cracking reactors temperature and composition profiles

Concentration profiles for the transesterification reactions in a batch reactor at constant temperature

Preheating reactor temperature profiles

Reactor exit temperature-time profile

Reactor optimum temperature profile

Reactor temperature

Reactor temperature catalyst profile

Reactors, batch temperature profile

Reforming process reactor temperature profiles

Sulfur dioxide oxidation reactors temperature profiles

Temperature profiles of reactor

Temperature profiles, reactors ammonia synthesis

Temperature profiles, reactors cement kiln

Temperature profiles, reactors cracking of petroleum

Temperature profiles, reactors endo- and exothermic processes

Temperature profiles, reactors jacketed tubular reactor

Temperature profiles, reactors methanol synthesis

Temperature profiles, reactors phosgene synthesis

Temperature profiles, reactors reactor with internal heat exchange

Tubular reactor temperature profile

Wall-temperature profiles, tubular reactor

© 2024 chempedia.info