Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow regime laminar

The effect of chemical reaction in reducing the effect of variation of the liquid rate on the rate of absorption in the laminar-flow regime was illustrated by the evaluation of the rate of absorption of chlorine in ferrous chloride solutions in a wetted-waU column by Gilliland, Baddoiir, and White [Am. In.st. Chem. Eng. J., 4, 323 (1958)]. [Pg.1404]

Li et al. [36] performed an extensive study on AP in a Sulzer SMX statie mixer with both Newtonian and non-Newtonian fluids. They showed that AP inereased by a faetor of 23 in a SMX statie mixer in the laminar flow regime. Figure 7-24 shows their eorrelation between the Fanning frietion faetor and the Reynolds number for experimental points under various operating eonditions. [Pg.609]

Visi-osity High viscosity crudes may flow in the laminar flow regime which causes high pressure drops. This is especially true of emulsions of water in high-viscosity crudes where the effective velocity of the mi slur e could be as much as ten times that of the base crude (see Volume 11... [Pg.446]

Figure 7.27. Twisted-blade type of static mixer operating in the laminar flow regime (a) Distributive mixing mechanism showing, in principle, the reduction in striation thickness produced (f>) Radial mixing contribution... Figure 7.27. Twisted-blade type of static mixer operating in the laminar flow regime (a) Distributive mixing mechanism showing, in principle, the reduction in striation thickness produced (f>) Radial mixing contribution...
The styrene conversion versus reaction time results for runs in the laminar flow regime are plotted in Figure 8. Both the rate of polymerization and the styrene conversion increase with increasing flow rate as noted previously (7). The conversion profile for the batch experimental run (B-3) is presented as a dashed line for comparison. It can be seen that the polymerization rates for runs with (Nj e e 2850 are greater than the corresponding batch polymerization with a conversion plateau being reached after about thirty minutes of reaction. This behavior is similar to the results obtained in a closed loop tubular reactor (7J) and is probably due to an excessively rapid consumption of initiator in a... [Pg.123]

Figure 7. Monomer conversion vs, polymerization time in the helical tubular reactor laminar flow regime... Figure 7. Monomer conversion vs, polymerization time in the helical tubular reactor laminar flow regime...
These observations are consistent with the proposed mechanism of the reaction being diffusion controlled in the laminar flow regime. The mass transport is aided by the velocity gradient and thus the reaction rate increases as the Reynolds number is increased. [Pg.133]

For most medium- and large-scale micromanifold structures, where one passage feeds multiple parallel channels, flow traverses through turbulent and transition flows in the micromanifold region. This fluid in turbulent to transition flow also turns in the micromanifold region as it drops flow into parallel microchannels, which are primarily in the laminar flow regime. [Pg.244]

One of the major interests of the HEX reactor is to offer a large ratio surface to reaction volume. Therefore, even if most of the time the laminar flow regime is not suitable to enhance transport phenomena with a moderate overall coefficient, the heat performances are expected to be high, since the compacity factor is always large. This fact is clearly exhibited in Table 12.4, where the results relative to the various HEX reactors studied in our laboratory have been plotted. [Pg.269]

Confined flows typically exhibit laminar-flow regimes, i.e. rely on a diffusion mixing mechanism, and consequently are only slowly mixed when the diffusion distance is set too large. For this reason, in view of the potential of microfabrication, many authors pointed to the enhancement of mass transfer that can be achieved on further decreasing the diffusional length scales. By simple correlations based on Fick s law, it is evident that short liquid mixing times in the order of milliseconds should result on decreasing the diffusion distance to a few micrometers. [Pg.44]

Separation layer mixers use either a miscible or non-miscible layer between the reacting solutions, in the first case most often identical with the solvent used [48]. By this measure, mixing is postponed to a further stage of process equipment. Accordingly, reactants are only fed to the reaction device, but in a defined, e.g. multi-lamination-pattem like, fluid-compartment architecture. A separation layer technique inevitably demands micro mixers, as it is only feasible in a laminar flow regime, otherwise turbulent convective flow will result in plugging close to the entrance of the mixer chamber. [Pg.402]

Concerning the hydrodynamics and the dimensioning of the test reactor, some rules of thumb are a valuable aid for the experimentalist. It is important that the reactor is operated under plug-flow conditions in order to avoid axial dispersion and diffusion limitation phenomena. Again, it has to be made clear that in many cases testing of monolithic bodies such as metal gauzes, foam ceramics, or monoliths used for environmental catalysis, often needs to be performed in the laminar flow regime. [Pg.395]

The value of the permeability coefficient is frequently used to give an indication of the ease with which a fluid will flow through a bed of particles or a filter medium. Some values of B for various packings, taken from Eisenklam(2), are shown in Table 4.1, and it can be seen that B can vary over a wide range of values. It should be noted that these values of B apply only to the laminar flow regime. [Pg.192]

Ammonia is adsorbed on the surface of an SCR catalyst in a diffusion limited laminar flow regime. The ammonia combines with vanadium pentoxide V2O5, a catalytic metal impregnated on the surface of the catalyst, to form a Bronsted acid site. NOx reduction takes place on this acid site to form nitrogen and water. The spent -OH site is restored to -OH via oxidation to repeat the catalytic cycle. Once the vanadium site can no longer revert back into the -1-5 oxidative state, then that site is no longer active for NO reduction. Figure 17.7 shows the catalytic cycle for the SCR reactions. [Pg.327]

In areas where sand or sediment production is anticipated, it should be removed pnor to flowing through a standard CPI Because of the required laminar flow regime, plate coalescers arc efficient sand-settling devices... [Pg.172]

Feind (F2) measured the thickness of various films of kinematic viscosities 1 to 19.7 centistokes flowing in a vertical tube. An improved drainage technique was used. At the lowest values of Nr.,. (smooth laminar flow regime) the values of Nr fell along the line given by Eq. (97). Once wavy flow commenced, the values deviated towards the Kapitsa line,... [Pg.180]

The so-called RIM-process (reactive injection molding) is a current realization of the reactive molding process. The heart of the process is the shock mixing of the reactive ingredients, which is achieved by collision of two jets injected at a pressure of 10 - 20 MPa. The reactive mixture is injected into the mold in a laminar flow regime the pressure at this stage does not exceed 0.1- 0.4 MPa.259 The practical development of this method relies on automatic control systems and modem high quality equipment. [Pg.179]

A. Muller, A Modular Approach to Heterogeneous Catalyst Screening in the Laminar Flow Regime , Thesis, VDI-Verlag GmbH, Diisseldorf, 2004. [Pg.126]

For the fluidized bed process the bed expansion as a consequence of an increase in linear flow rate has to be considered. In a simplified picture diffusive transport takes place in a boundary layer around the matrix particle which is frequently renewed, this frequency being dependent on velocity and voidage, as long as convective effects, e.g. the movement of particles are neglected. Rowe [74] has included these considerations into his correlation for kf in fluidized beds, which is applicable for a wide range of Reynolds numbers, including the laminar flow regime where fluidized bed adsorption of proteins takes place (Eq. 19). The exponent m is set to 1 for a liquid fluidized bed, a represents the proportionality factor in the correlation for packed beds (Eq. 18) and is assumed as 1.45. [Pg.215]

The separation-layer technique benefits from the unique feature of micro mixers, such as to operate in a laminar flow regime [135], By the absence of convective recirculation patterns, at least close to the inlet, the separation layer remains as a barrier between the solution to be mixed, as long as it is not passed by molecules owing to diffusive transport. [Pg.152]

Micro structured reactors will not only increase reactor compactness and reduce the size of sometimes expensive samples but will also allow a thorough fluidic description of the flow in the reactor. The mechanism, which assists here, is the laminar-flow regime, which develops owing to the small reactor dimensions. [Pg.413]


See other pages where Flow regime laminar is mentioned: [Pg.597]    [Pg.108]    [Pg.161]    [Pg.173]    [Pg.113]    [Pg.114]    [Pg.134]    [Pg.200]    [Pg.228]    [Pg.493]    [Pg.201]    [Pg.24]    [Pg.135]    [Pg.149]    [Pg.150]    [Pg.235]    [Pg.62]    [Pg.129]    [Pg.573]    [Pg.238]    [Pg.290]    [Pg.202]    [Pg.208]    [Pg.203]    [Pg.409]    [Pg.530]   
See also in sourсe #XX -- [ Pg.113 , Pg.130 ]

See also in sourсe #XX -- [ Pg.149 ]

See also in sourсe #XX -- [ Pg.1436 ]

See also in sourсe #XX -- [ Pg.456 ]




SEARCH



Flow regimes

Regime laminar

© 2024 chempedia.info