Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals, also

Hydrochloric acid is a strong monobasic acid, dissolving metals to form salt and evolving hydrogen. The reaction may be slow if the chloride formed is insoluble (for example lead and silver are attacked very slowly). The rate of attack on a metal also depends on concentration thus aluminium is attacked most rapidly by 9 M hydrochloric acid, while with other metals such as zinc or iron, more dilute acid is best. [Pg.331]

The electrical industry is one of the greatest users of copper. Iron s alloys -- brass and bronze --are very important all American coins are copper alloys and gun metals also contain copper. [Pg.62]

Its alloys include solder, type metal, and various antifriction metals. Great quantities of lead, both as the metal and as the dioxide, are used in storage batteries. Much metal also goes into cable covering, plumbing, ammunition, and in the manufacture of lead tetraethyl. [Pg.85]

Nearly every technical difficulty known is routinely encountered in transition metal calculations. Calculations on open-shell compounds encounter problems due to spin contamination and experience more problems with SCF convergence. For the heavier transition metals, relativistic effects are significant. Many transition metals compounds require correlation even to obtain results that are qualitatively correct. Compounds with low-lying excited states are difficult to converge and require additional work to ensure that the desired states are being computed. Metals also present additional problems in parameterizing semi-empirical and molecular mechanics methods. [Pg.286]

Charge-transfer absorption is important because it produces very large absorbances, providing for a much more sensitive analytical method. One important example of a charge-transfer complex is that of o-phenanthroline with Fe +, the UV/Vis spectrum for which is shown in Figure 10.17. Charge-transfer absorption in which the electron moves from the ligand to the metal also is possible. [Pg.382]

Refractoriness (Melting Temperature). Instantaneous grinding temperatures may exceed 3500°C at the interface between an abrasive and the workpiece being ground (14). Hence melting temperature is an important property. Additionady, for alumina, sdicon carbide, B C, and many other materials, hardness decreases rapidly with increasing temperature (7). Fortunately, ferrous metals also soften with increasing temperatures and do so even more rapidly than abrasives (15). [Pg.10]

Liquid metals, however, present several disadvantages. Their weights must be considered with regard to equipment design. Additionally, Hquid metals are difficult to contain and special pumps must be used for system safety. Alkali metals react violentiy with water and bum ia air. Liquid metals also may become radioactive whea used for cooling auclear reactors (qv). [Pg.505]

Hydrogen peroxide, in combination with reducing agents (transition metals), also is used in those appHcations where its high water- and low od-solubiHty is not a problem or is easily overcome. [Pg.228]

Chemical Properties. Molybdenum has good resistance to chemical attack by mineral acids, provided that oxidizing agents ate not present. The metal also offers excellent resistance to attack by several liquid metals. The approximate temperature limits for molybdenum to be considered for long-time service while in contact with various metals in the hquid state ate as follows ... [Pg.465]

Because of its high modulus of elasticity, molybdenum is used in machine-tool accessories such as boring bars and grinding quills. Molybdenum metal also has good thermal-shock resistance because of its low coefficient of thermal expansion combined with high thermal conductivity. This combination accounts for its use in casting dies and in some electrical and electronic appHcations. [Pg.466]

Aluminum obtained by electrolysis of cryoHte baths contains iron [7439-89-6] and siUcon [7440-21-3] as impurities. Iron content may vary from 0.05 to 0.4% and siUcon from 0.05 to 0.15% depending on the raw materials and the age and condition of the reduction cell. Primary aluminum metal also contains small, usually not to exceed 0.05% in total, amounts of many other elements. Some of these trace impurities are Cu, Mn, Ni, Zn, V, Na, Ti, Mg, and Ga, most of which are present in quantities substantially below 100 ppm. [Pg.105]

Tin metal also reacts directly with a number of activated organic haUdes, including aHyl bromide, benzyl chloride, chloromethyl methyl ether, and P-halocarboxyhc esters and nitriles giving fair-to-good yields of diorganotin dihaUdes (97,111—114). [Pg.73]

Further dechlorination may occur with the formation of substituted diphenyhnethanes. If enough aluminum metal is present, the Friedel-Crafts reactions involved may generate considerable heat and smoke and substantial amounts of hydrogen chloride, which reacts with more aluminum metal, rapidly forming AlCl. The addition of an epoxide inhibits the initiation of this reaction by consuming HCl. Alkali, alkaline-earth, magnesium, and zinc metals also present a potential reactivity hazard with chlorinated solvents such as methylene chloride. [Pg.519]

However, conductive elastomers have only ca <10 of the conductivity of soHd metals. Also, the contact resistance of elastomers changes with time when they are compressed. Therefore, elastomers are not used where significant currents must be carried or when low or stable resistance is required. Typical apphcations, which require a high density of contacts and easy disassembly for servicing, include connection between Hquid crystal display panels (see Liquid crystals) and between printed circuit boards in watches. Another type of elastomeric contact has a nonconducting silicone mbber core around which is wrapped metalized contacts that are separated from each other by insulating areas (25). A newer material has closely spaced strings of small spherical metal particles in contact, or fine soHd wires, which are oriented in the elastomer so that electrical conduction occurs only in the Z direction (26). [Pg.31]

Brazing or welding alloys should be more noble (i.e., cathodic) than at least one of the joined metals. Also, these alloys should be compatible to both the other metals. [Pg.38]

In buried pipeline installations, avoid contact of piping with structures of dissimilar metals. Also, where possible, specify uniform quality, grade and surface conditions. Various quality sections should not be welded together in buried installations. [Pg.42]

Metallizing-also called metal spraying refers to the application of a metal coating to a surface (either metallic or nonmetallic) by means of a spray of molten particles. [Pg.49]

Several processes based on non-precious metal also exist. Because of high catalyst deactivation rates with these catalyst systems, they all require some form of continuous regeneration. The Fluid Hydroforming process uses fluid solids techniques to move catalyst between reactor and regenerator TCR and Hyperforming use some form of a moving bed system. [Pg.47]

Some metals, such as cadmium, cobalt, and lead, are selectively car-diotoxic. They depress contractivity and slow down conduction in the cardiac-system. They may also cause morphological alterations, e.g., cobalt, which was once used to prevent excessive foam formation in beers, caused cardiomyopathy among heavy beer drinkers. Some of the metals also block ion channels in myocytes. Manganese and nickel block calcium channels, whereas barium is a strong inducer of cardiac arrhythmia. [Pg.297]

Similar structural diversity has been established for the heavier alkali metals also but it is unnecessary to deal with this in detail. The sUTictural chemistry of the organometallic compounds in particular, and of related complexes, has been well reviewed. [Pg.94]

Aqueous perchloric acid solutions exhibit very little oxidizing power at room temperature, presumably because of kinetic activation barriers, though some strongly reducing species slowly react, e.g, Sn , Ti , V and V , and dithion-ite. Others do not, e.g. H2S, SO2, HNO2, HI and, surprisingly, Cr and Eu . Electropositive metals dissolve with liberation of H2 and oxides of less basic metals also yield perchlorates, e.g. with 12% acid ... [Pg.868]

A unique method to generate the pyridine ring employed a transition metal-mediated 6-endo-dig cyclization of A-propargylamine derivative 120. The reaction proceeds in 5-12 h with yields of 22-74%. Gold (HI) salts are required to catalyze the reaction, but copper salts are sufficient with reactive ketones. A proposed reaction mechanism involves activation of the alkyne by transition metal complexation. This lowers the activation energy for the enamine addition to the alkyne that generates 121. The transition metal also behaves as a Lewis acid and facilitates formation of 120 from 118 and 119. Subsequent aromatization of 121 affords pyridine 122. [Pg.319]

These metals, when deposited on the E-cat catalyst, increase coke and gas-making tendencies of the catalyst. They cause dehydrogenation reactions, which increase hydrogen production and decrease gasoline yields. Vanadium can also destroy the zeolite activity and thus lead to lower conversion. The deleterious effects of these metals also depend on the regenerator temperature the rate of deactivation of a metal-laden catalyst increases as the regenerator temperature increases. [Pg.108]


See other pages where Metals, also is mentioned: [Pg.20]    [Pg.259]    [Pg.127]    [Pg.395]    [Pg.505]    [Pg.417]    [Pg.104]    [Pg.5]    [Pg.9]    [Pg.205]    [Pg.227]    [Pg.62]    [Pg.43]    [Pg.216]    [Pg.218]    [Pg.88]    [Pg.2126]    [Pg.2451]    [Pg.155]    [Pg.41]    [Pg.383]    [Pg.221]    [Pg.277]    [Pg.412]    [Pg.74]    [Pg.770]    [Pg.138]    [Pg.144]   


SEARCH



Directed ortho metalation, also

Directed ortho metalation, also compounds

Dissolving metal reductions also

Electrodeposition of metals that can also be obtained from water

Halides, metal, also

Lead also metals

Metal Complexes for Cotton (see also Section

Metals, also homeostasis

Metals, also responsive elements

Metals, also toxicity

Organometallic compounds, also from metallation with metals

© 2024 chempedia.info